, Volume 21, Issue 3, pp 801–808 | Cite as

Solvothermal synthesis of graphene nanosheets as the electrode materials for supercapacitors

  • Yunfu Liu
  • Guohui Yuan
  • Zhaohua Jiang
  • Zhongping Yao
  • Min Yue
Original Paper


Graphene nanosheets (GNs) were prepared by one-pot solvothermal reduction in ethanol at different temperatures as supercapacitor electrode materials. The results of X-ray diffraction showed that the layer-to-layer distance of GNs decreased with the increase of temperature. Compared to graphite oxide (GO), these decreased values indicated that the enhanced temperature promoted the deoxidization of GO to GNs. Raman spectra showed that GNs exhibited numerous smaller disordered graphitic domains at elevated temperature. Based on the analysis results of the X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy, the higher solvothermal temperature was beneficial to remove more oxygen-containing groups of GO and obtain better quality GNs. The electrochemical performances of GNs had been studied by cyclic voltammetry and galvanostatic charge-discharge cycling techniques. The results revealed that the capacitive values increased with increasing temperature and the GNs at 493 K could provide a high specific capacitance of 186 F g−1 at a current density of 0.1 A g−1 in the 6 M KOH solution.


Graphene nanosheets Solvothermal Supercapacitor Temperature 



This work was financially supported by the Natural Science Foundation of China (21076050) and Natural Science and Technology Support Program of China (2013BAE04B04).


  1. 1.
    Burke A (2000) Ultracapacitors: why, how, and where is the technology. J Power Sources 91:37–50CrossRefGoogle Scholar
  2. 2.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRefGoogle Scholar
  3. 3.
    Xia JL, Chen F, Li JH, Tao NJ (2009) Measurement of the quantum capacitance of graphene. Nat Nanotechnol 4:505–509CrossRefGoogle Scholar
  4. 4.
    Stoller MD, Park SJ, Zhu YW, An JH, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8:3498–3502CrossRefGoogle Scholar
  5. 5.
    Peng XY, Liu XX, Diamond D, Lau KT (2011) Synthesis of electrochemically-reduced graphene oxide film with controllable size and thickness and its use in supercapacitor. Carbon 49:3488–3496CrossRefGoogle Scholar
  6. 6.
    Zhu YW, Murali ST, Stoller MD, Velamakanni A, Piner RD, Ruoff RS (2010) Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors. Carbon 48:2106–2122CrossRefGoogle Scholar
  7. 7.
    Lu XK, Yu MF, Huang H, Ruoff RS (1999) Tailoring graphite with the goal of achieving single sheets. Nanotechnology 10:269–272CrossRefGoogle Scholar
  8. 8.
    Berger C, Song ZM, Li XB, Wu XS, Brown N, Naud C, Mayou D, Li TB, Hass J, Marchenkov AN, Conrad EH, First PN, de Heer WA (2006) Electronic confinement and coherence in patterned epitaxial graphene. Science 312:1191–1196CrossRefGoogle Scholar
  9. 9.
    Charrier A, Coati A, Argunova T, Thibaudau F, Garreau Y, Pinchaux R, Forbeaux I, Debever JM, Sauvage-Simkin M, Themlin JM (2002) Solid-state decomposition of silicon carbide for growing ultra-thin heteroepitaxial graphite films. J Appl Phys 92:2479–2484CrossRefGoogle Scholar
  10. 10.
    Sun J, Cole MT, Lindvall N, Teo KBK, Yurgens A (2012) Non-catalytic chemical vapor deposition of graphene on high- temperature substrates for transparent electrodes. Appl Phys Lett 100:022102CrossRefGoogle Scholar
  11. 11.
    Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn JH, Kim P, Choi JY, Hong BH (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706–710CrossRefGoogle Scholar
  12. 12.
    Brodie BC (1860) Ueber das atomgewicht des graphits. Liebigs Ann Chem 114:6CrossRefGoogle Scholar
  13. 13.
    Staudenmaier L (1898) Verfahren zur darstellung der graphitsäure. Ber Dtsch Chem Ges 3:1481–1487CrossRefGoogle Scholar
  14. 14.
    Hummers W, Offeman R (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339CrossRefGoogle Scholar
  15. 15.
    Zhou T, Chen F, Liu K, Deng H, Zhang Q, Feng JW, Fu Q (2011) A simple and efficient method to prepare graphene by reduction of graphite oxide with sodium hydrosulfite. Nanotechnology 22:045704CrossRefGoogle Scholar
  16. 16.
    Amarnath CA, Hong CE, Kim NH, Ku BC, Kuila T, Lee JH (2011) Efficient synthesis of graphene sheets using pyrrole as a reducing agent. Carbon 49:3497–3502CrossRefGoogle Scholar
  17. 17.
    Wakeland S, Martinez R, Grey JK, Luhrs CC (2010) Production of graphene from graphite oxide using urea as expansion-reduction agent. Carbon 48:3463–3470CrossRefGoogle Scholar
  18. 18.
    McAllister MJ, Li JL, Adamson DH, Schniepp HC, Abdala AA, Liu J, Herrera-Alonso M, Milius DL, Car R, Prud’homme RK, Aksay IA (2007) Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem Mater 19:4396–4404CrossRefGoogle Scholar
  19. 19.
    Wang HL, Robinson JT, Li XL, Dai HJ (2009) Solvothermal reduction of chemically exfoliated graphene sheets. J Am Chem Soc 131:9910–9911CrossRefGoogle Scholar
  20. 20.
    Kuila T, Mishra AK, Khanra P, Kim NH, Lee JH (2013) Recent advances in the efficient reduction of graphene oxide and its application as energy storage electrode materials. Nanoscale 5:52–71CrossRefGoogle Scholar
  21. 21.
    Singh V, Joung D, Zhai L, Das S, Khondaker SI, Seal S (2011) Graphene based materials: past, present and future. Prog Mater Sci 56:1178–1271CrossRefGoogle Scholar
  22. 22.
    Nethravathi C, Rajamathi M (2008) Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide. Carbon 46:1994–1998CrossRefGoogle Scholar
  23. 23.
    Dubin S, Gilje S, Wang K, Tung VC, Cha K, Hall AS, Farrar J, Varshneya R, Yang Y, Kaner RB (2010) A one-step, solvothermal reduction method for producing reduced graphene oxide dispersions in organic solvents. ACS Nano 4:3845–3852CrossRefGoogle Scholar
  24. 24.
    Zhou D, Cheng QY, Han BH (2011) Solvothermal synthesis of homogeneous graphene dispersion with high concentration. Carbon 49:3920–3927CrossRefGoogle Scholar
  25. 25.
    Lin ZY, Liu Y, Yao YG, Hildreth OJ, Li Z, Moon K, Wong CP (2011) Superior capacitance of functionalized graphene. J Phys Chem C 115:7120–7125CrossRefGoogle Scholar
  26. 26.
    Lin ZY, Yao YG, Li Z, Liu Y, Li Z, Wong CP (2010) Solvent-assisted thermal reduction of graphite oxide. J Phys Chem C 114:14819–14825CrossRefGoogle Scholar
  27. 27.
    Barton AFM (1975) Solubility parameters. Chem Rev 75:731–753CrossRefGoogle Scholar
  28. 28.
    Park SJ, An JH, Jung I, Piner RD, An SJ, Li XS, Velamakanni A, Ruoff RS (2009) Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett 9:1593–1597CrossRefGoogle Scholar
  29. 29.
    Choucair M, Thordarson P, Stride JA (2009) Gram-scale production of graphene based on solvothermal synthesis and sonication. Nat Nanotechnol 4:30–33CrossRefGoogle Scholar
  30. 30.
    Su CY, Xu YP, Zhang WJ, Zhao JW, Liu AP, Tang XH, Tsai CH, Huang YZ, Li LJ (2010) Highly efficient restoration of graphitic structure in graphene oxide. ACS Nano 4:5285–5292CrossRefGoogle Scholar
  31. 31.
    Dreyer DR, Murali S, Zhu YW, Ruoff RS, Bielawski CW (2011) Reduction of graphite oxide using alcohols. J Mater Chem 21:3443–3447CrossRefGoogle Scholar
  32. 32.
    Wang GX, Yang J, Park J, Gou XL, Wang B, Liu H, Yao J (2008) Facile synthesis and characterization of graphene nanosheets. J Phys Chem C 112:8192–8195CrossRefGoogle Scholar
  33. 33.
    Zhang JL, Yang HJ, Shen GX, Cheng P, Zhang JY, Guo SW (2010) Reduction of graphene oxide via L-ascorbic acid. Chem Commun 46:1112–1114CrossRefGoogle Scholar
  34. 34.
    Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun ZY, De S, Mcgovern IT, Holland B, Byrne M, Gun’ko YK, Boland JJ, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari AC, Coleman JN (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3:563–568CrossRefGoogle Scholar
  35. 35.
    Szabó T, Berkesi O, Forgó P, Josepovits K, Sanakis Y, Petridis D, Dékány I (2006) Evolution of surface functional groups in a series of progressively oxidized graphite oxide. Chem Mater 18:2740CrossRefGoogle Scholar
  36. 36.
    Guo HL, Wang XF, Qian QY, Wang FB, Xia XH (2009) A green approach to the synthesis of graphene nanosheets. ACS Nano 3:2653–2659CrossRefGoogle Scholar
  37. 37.
    Gao XF, Jang JY, Nagase S (2010) Hydrazine and thermal reduction of graphene oxide: reaction mechanisms, product structures, and reaction design. J Phys Chem C 114:832–842CrossRefGoogle Scholar
  38. 38.
    Li ZJ, Yang BC, Zhang SR, Zhao CM (2012) Graphene oxide with improved electrical conductivity for supercapacitor electrodes. Appl Surf Sci 258:3726–3731CrossRefGoogle Scholar
  39. 39.
    Matsuo Y, Iwasa K, Sugie Y, Mineshige A, Usami H (2010) Preparation of carbon-based transparent and conductive thin films by pyrolysis of silylated graphite oxides. Carbon 48:4009–4014CrossRefGoogle Scholar
  40. 40.
    Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia YY, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565CrossRefGoogle Scholar
  41. 41.
    Wang GX, Wang B, Park J, Yang J, Shen XP, Yao J (2009) Synthesis of enhanced hydrophilic and hydrophobic graphene oxide nanosheets by a solvothermal method. Carbon 47:68–72CrossRefGoogle Scholar
  42. 42.
    Qian W, Chen ZQ, Cottingham S, Merrill WA, Swartz NA, Goforth AM, Clare TL, Jiao J (2012) Surfactant-free hybridization of transition metal oxide nanoparticles with conductive graphene for high-performance supercapacitor. Green Chem 14:371–377CrossRefGoogle Scholar
  43. 43.
    Pham VH, Cuong TV, Hur SH, Shin EW, Kim JS, Chung JS, Kim EJ (2010) Fast and simple fabrication of a large transparent chemically-converted graphene film by spray-coating. Carbon 48:1945–1951CrossRefGoogle Scholar
  44. 44.
    Fan ZJ, Yan J, Wei T, Zhi LJ, Ning GQ, Li TY, Wei F (2011) Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density. Adv Funct Mater 21:2366–2375CrossRefGoogle Scholar
  45. 45.
    Yan J, Wei T, Qiao WM, Shao B, Zhao QK, Zhang LJ, Fan ZJ (2010) Rapid microwave-assisted synthesis of graphene nanosheet/Co3O4 composite for supercapacitors. Electrochim Acta 55:6973–6978CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.School of Chemical Engineering and TechnologyHarbin Institute of TechnologyHarbinPeople’s Republic of China
  2. 2.College of Environmental and Chemical EngineeringHeilongjiang University of Science and TechnologyHarbinPeople’s Republic of China
  3. 3.Shenzhen BTR New Energy Materials INCShenzhenPeople’s Republic of China

Personalised recommendations