Skip to main content

Electrical and transport properties of NH4Br-doped cornstarch-based solid biopolymer electrolyte

Abstract

In this work, cornstarch-based electrolytes are doped with ammonium bromide (NH4Br) and plasticized with glycerol. Starch-NH4Br complexation is evidenced from the Fourier transform infrared (FTIR) spectroscopy results. A room temperature conductivity of (5.57 ± 1.88) × 10−5 S cm−1 obtained by 70 wt% starch–30 wt% NH4Br electrolyte is enhanced to (1.80 ± 0.26) × 10−3 S cm−1 with the addition of 30 wt% glycerol. All electrolytes exhibit Arrhenius behavior. The conduction mechanism of 70 wt% starch–30 wt% NH4Br electrolyte and 49 wt% starch–21 wt% NH4Br–30 wt% glycerol electrolyte follows overlapping large polaron tunneling (OLPT) and correlated barrier hopping (CBH) models, respectively. The transference number of ion (t ion) and proton (t p) is found to be 0.98 and 0.35, respectively, for 49 wt% starch–21 wt% NH4Br–30 wt% glycerol electrolyte. The decomposition voltage of 49 wt% starch–21 wt% NH4Br–30 wt% glycerol electrolyte is 1.66 V.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. Takami N, Sekino M, Ohsaki T, Kanda M, Yamamoto M (2001) New thin lithium-ion batteries using a liquid electrolyte with thermal stability. J Power Sources 97–98:677–680. doi:10.1016/S0378-7753(01)00699-1

    Article  Google Scholar 

  2. Hofmann A, Schulz M, Hanemann T (2013) Gel electrolytes based on ionic liquids for advanced lithium polymer batteries. Electrochim Acta 89:823–831. doi:10.1016/j.electacta.2012.10.144

    Article  CAS  Google Scholar 

  3. Deepa M, Sharma N, Agnihotry SA, Singh S, Lal T, Chandra R (2002) Conductivity and viscosity of liquid and gel electrolytes based on LiClO4, LiN(CF3SO2)2 and PMMA. Solid State Ionics 152–153:253–258. doi:10.1016/S0167-2738(02)00307-7

    Article  Google Scholar 

  4. Perera K, Dissanayake MAKL (2006) Conductivity variation of the liquid electrolyte, EC : PC : LiCF3SO3 with salt concentration. Sri Lankan J Phys 7:1–5. doi:10.4038/sljp.v7i0.202

    Google Scholar 

  5. Lee CP, Chen PY, Vittal R, Ho KC (2010) Iodine-free high efficient quasi solid-state dye-sensitized solar cell containing ionic liquid and polyaniline-loaded carbon black. J Mater Chem 20:2356–2361. doi:10.1039/B922350A

    Article  CAS  Google Scholar 

  6. Lee CP, Lin LY, Chen PY, Vittal R, Ho KC (2010) All-solid-state dye-sensitized solar cells incorporating SWCNTs and crystal growth inhibitor. J Mater Chem 20:3619–3625. doi:10.1039/B925221E

    Article  CAS  Google Scholar 

  7. Ramesh S, Liew CW, Arof AK (2011) Ion conducting corn starch biopolymer electrolytes doped with ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate. J Non-Cryst Solids 357:3654–3660. doi:10.1016/j.jnoncrysol.2011.06.030

    Article  CAS  Google Scholar 

  8. Ma X, Yu J, He K, Wang N (2007) The effects of different plasticizers on the properties of thermoplastic starch as solid polymer electrolytes. Macromol Mater Eng 292:503–510. doi:10.1002/mame.200600445

    Article  CAS  Google Scholar 

  9. Lu DR, Xiao CM, Xu SJ (2009) Starch-based completely biodegradable polymer materials. Express Polym Lett 3:366–375. doi:10.3144/expresspolymlett.2009.46

    Article  CAS  Google Scholar 

  10. Varshney PK, Gupta S (2011) Natural polymer-based electrolytes for electrochemical devices: a review. Ionics 17:479–483. doi:10.1007/s11581-011-0563-1

    Article  CAS  Google Scholar 

  11. Marcondes RFMS, D’Agostini PS, Ferreira J, Girotto EM, Pawlicka A, Dragunski DC (2010) Amylopectin-rich starch plasticized with glycerol for polymer electrolyte application. Solid State Ionics 181:586–591. doi:10.1016/j.ssi.2010.03.016

    Article  CAS  Google Scholar 

  12. Khiar ASA, Arof AK (2010) Conductivity studies of starch-based polymer electrolytes. Ionics 16:123–129. doi:10.1007/s11581-009-0356-y

    Article  CAS  Google Scholar 

  13. Kadir MFZ, Majid SR, Arof AK (2010) Plasticized chitosan-PVA blend polymer electrolyte based proton battery. Electrochim Acta 55:1475–1482. doi:10.1016/j.electacta.2009.05.011

    Article  CAS  Google Scholar 

  14. Pratap R, Singh B, Chandra S (2006) Polymeric rechargeable solid-state proton battery. J Power Sources 161:702–706. doi:10.1016/j.jpowsour.2006.04.020

    Article  CAS  Google Scholar 

  15. Prajapati GK, Roshan R, Gupta PN (2010) Effect of plasticizer on ionic transport and dielectric properties of PVA-H3PO4 proton conducting polymeric electrolytes. J Phys Chem Solids 71:1717–1723. doi:10.1016/j.jpcs.2010.08.023

    Article  CAS  Google Scholar 

  16. Raj CJ, Varma KBR (2010) Synthesis and electrical properties of the (PVA)0.7(KI)0.3 · xH2SO4 (0 ≤ x ≤ 5) polymer electrolytes and their performance in a primary Zn/MnO2 battery. Electrochim Acta 56:649–656. doi:10.1016/j.electacta.2010.09.076

    Article  Google Scholar 

  17. Hema M, Selvasekerapandian S, Sakunthala A, Arunkumar D, Nithya H (2008) Structural, vibrational and electrical characterization of PVA-NH4Br polymer electrolyte system. Physica B 403:2740–2747. doi:10.1016/j.physb.2008.02.001

    Article  CAS  Google Scholar 

  18. Woo HJ, Majid SR, Arof AK (2012) Dielectric properties and morphology of polymer electrolyte based on poly(ε-caprolactone) and ammonium thiocyanate. Mater Chem Phys 134:755–761. doi:10.1016/j.matchemphys.2012.03.064

    Article  CAS  Google Scholar 

  19. Kadir MFZ, Aspanut Z, Majid SR, Arof AK (2011) FTIR studies of plasticized poly(vinyl alcohol)-chitosan blend doped with NH4NO3 polymer electrolyte membrane. Spectrochim Acta A 78:1068–1074. doi:10.1016/j.saa.2010.12.051

    Article  CAS  Google Scholar 

  20. Vijaya N, Selvasekarapandian S, Hirankumar G, Karthikeyan S, Nithya H, Ramya CS, Prabu M (2012) Structural, vibrational, thermal, and conductivity studies on proton-conducting polymer electrolyte based on poly(N-vinylpyrrolidone). Ionics 18:91–99. doi:10.1007/s11581-011-0589-4

    Article  CAS  Google Scholar 

  21. Wagner JB, Wagner CJ (1957) Electrical conductivity measurements on cuprous halides. J Chem Phys 26:1597–1601. doi:10.1063/1.1743590

    Article  CAS  Google Scholar 

  22. Watanabe M, Nagano S, Sanui K, Ogata N (1988) Estimation of Li+ transport number in polymer electrolytes by the combination of complex impedance and potentiostatic polarization measurements. Solid State Ionics 28–30:911–917. doi:10.1016/0167-2738(88)90303-7

    Article  Google Scholar 

  23. Hema M, Selvasekarapandian S, Nithya H, Sakunthala A, Arunkumar D (2009) FTIR, XRD and ac impedance spectroscopic study on PVA based polymer electrolyte doped with NH4X (X = Cl, Br, I). J Non-Cryst Solids 355:84–90. doi:10.1016/j.jnoncrysol.2008.10.009

    Article  CAS  Google Scholar 

  24. Teoh KH, Ramesh S, Arof AK (2012) Investigation on the effect of nanosilica towards corn starch-lithium perchlorate-based polymer electrolytes. J Solid State Electrochem 16:3165–3170. doi:10.1007/s10008-012-1741-4

    Article  CAS  Google Scholar 

  25. Shukur MF, Ithnin R, Illias HA, Kadir MFZ (2013) Proton conducting polymer electrolyte based on plasticized chitosan-PEO blend and application in electrochemical devices. Opt Mater 35:1834–1841. doi:10.1016/j.optmat.2013.03.004

    Article  CAS  Google Scholar 

  26. Buraidah MH, Teo LP, Majid SR, Arof AK (2009) Ionic conductivity by correlated barrier hopping in NH4I doped chitosan solid electrolyte. Physica B 404:1373–1379. doi:10.1016/j.physb.2008.12.027

    Article  CAS  Google Scholar 

  27. Stygar J, Zukowska G, Wieczorek W (2005) Study of association in alkali metal perchlorate-poly(ethylene glycol) monomethyl ether solutions by FT-IR spectroscopy and conductivity measurements. Solid State Ionics 176:2645–2652. doi:10.1016/j.ssi.2005.07.006

    Article  CAS  Google Scholar 

  28. Ning W, Xingxiang Z, Haihui L, Benqiao H (2009) 1-Allyl-3-methylimidazolium chloride plasticized-corn starch as solid biopolymer electrolytes. Carbohydr Polym 76:482–484. doi:10.1016/j.carbpol.2008.11.005

    Article  Google Scholar 

  29. Liang S, Huang Q, Liu L, Yam KL (2009) Microstructure and molecular interaction in glycerol plasticized chitosan/poly(vinyl alcohol) blending films. Macromol Chem Phys 210:832–839. doi:10.1002/macp.200900053

    Article  CAS  Google Scholar 

  30. Shukur MF, Ibrahim F, Majid NA, Ithnin R, Kadir MFZ (2013) Electrical analysis of amorphous corn starch-based polymer electrolyte membranes doped with LiI. Phys Scr 88:025601. doi:10.1088/0031-8949/88/02/025601

    Article  Google Scholar 

  31. Liu H, Adhikari R, Guo Q, Adhikari B (2013) Preparation and characterization of glycerol plasticized (high-amylose) starch-chitosan films. J Food Eng 116:588–597. doi:10.1016/j.jfoodeng.2012.12.037

    Article  CAS  Google Scholar 

  32. Bergo PVA, Sobral PJA, Prison JM (2009) Physical properties of cassava starch films containing glycerol. Gene Conserve 8:727–734

    Google Scholar 

  33. Vicentini NM, Dupuy N, Leitzelman M, Cereda MP, Sobral PJA (2005) Prediction of cassava starch eible film properties by chemometric analysis of infrared spectra. Spectrosc Lett 38:749–767. doi:10.1080/00387010500316080

    Article  CAS  Google Scholar 

  34. Li M, Yang L, Fang S, Dong S (2011) Novel polymeric ionic liquid membranes as solid polymer electrolytes with high ionic conductivity at moderate temperature. J Membr Sci 366:245–250. doi:10.1016/j.memsci.2010.10.004

    Article  CAS  Google Scholar 

  35. Curvelo AAS, de Carvalho AJF, Agnelli JAM (2001) Thermoplastic starch-cellulosic fibers composites: preliminary results. Carbohydr Polym 45:183–188. doi:10.1016/S0144-8617(00)00314-3

    Article  CAS  Google Scholar 

  36. Johan MR, Ting LM (2011) Structural, thermal and electrical properties of nano manganese-composite polymer electrolytes. Int J Electrochem Sci 6:4737–4748

    CAS  Google Scholar 

  37. Ramesh S, Yahaya AH, Arof AK (2002) Dielectric behaviour of PVC-based polymer electrolytes. Solid State Ionics 152–153:291–294. doi:10.1016/S0167-2738(02)00311-9

    Article  Google Scholar 

  38. Samsudin AS, Khairul WM, Isa MIN (2012) Characterization on the potential of carboxy methylcellulose for application as proton conducting biopolymer electrolytes. J Non-Cryst Solids 358:1104–1112. doi:10.1016/j.jnoncrysol.2012.02.004

    Article  CAS  Google Scholar 

  39. Osman Z, Ghazali MIM, Othman L, Isa KBM (2012) AC ionic conductivity and DC polarization method of lithium ion transport in PMMA–LiBF4 gel polymer electrolytes. Results Phys 2:1–4. doi:10.1016/j.rinp.2011.12.001

    Article  CAS  Google Scholar 

  40. Mohan KR, Achari VBS, Rao VVRN, Sharma AK (2011) Electrical and optical properties of (PEMA/PVC) polymer blend electrolyte doped with NaClO4. Polym Test 30:881–886. doi:10.1016/j.polymertesting.2011.08.010

    Article  Google Scholar 

  41. Ramu C, Naidu YRV, Sharma AK (1994) Dielectric relaxation in iodine doped cellulose acetate films. Ferroelectrics 159:275–280. doi:10.1080/00150199408007585

    Article  Google Scholar 

  42. Aji MP, Masturi BS, Khairurrijal AM (2012) A general formula for ion concentration-dependent electrical conductivities in polymer electrolytes. Am J Appl Sci 9:946–954. doi:10.3844/ajassp.2012.946.954

    Article  CAS  Google Scholar 

  43. Malathi J, Kumaravadivel M, Brahmanandhan GM, Hema M, Baskaran R, Selvasekarapandian S (2010) Structural, thermal and electrical properties of PVA–LiCF3SO3 polymer electrolyte. J Non-Cryst Solids 356:2277–2281. doi:10.1016/j.jnoncrysol.2010.08.011

    Article  CAS  Google Scholar 

  44. Wu GM, Lin SJ, Yang CC (2006) Preparation and characterization of PVA/PAA membranes for solid polymer electrolytes. J Membr Sci 275:127–133. doi:10.1016/j.memsci.2005.09.012

    Article  CAS  Google Scholar 

  45. Han DG, Choi GM (1998) Computer simulation of the electrical conductivity of composites: the effect of geometrical arrangement. Solid State Ionics 106:71–87. doi:10.1016/S0167-2738(97)00484-0

    Article  CAS  Google Scholar 

  46. Shuhaimi NEA, Teo LP, Woo HJ, Majid SR, Arof AK (2012) Electrical double-layer capacitors with plasticized polymer electrolyte based on methyl cellulose. Polym Bull 69:807–826. doi:10.1007/s00289-012-0763-5

    Article  CAS  Google Scholar 

  47. Qian X, Gu N, Cheng Z, Yang X, Wang E, Dong S (2001) Impedance study of (PEO)10LiClO4–Al2O3 composite polymer electrolyte with blocking electrodes. Electrochim Acta 46:1829–1836. doi:10.1016/S0013-4686(00)00723-4

    Article  CAS  Google Scholar 

  48. Teo LP, Buraidah MH, Nor AFM, Majid SR (2012) Conductivity and dielectric studies of Li2SnO3. Ionics 18:655–665. doi:10.1007/s11581-012-0667-2

    Article  CAS  Google Scholar 

  49. Nithya H, Selvasekarapandian S, Kumar DA, Sakunthala A, Hema M, Christopherselvin P, Kawamura J, Baskaran R, Sanjeeviraja C (2011) Thermal and dielectric studies of polymer electrolyte based on P(ECH-EO). Mater Chem Phys 126:404–408. doi:10.1016/j.matchemphys.2010.10.047

    Article  CAS  Google Scholar 

  50. Pradhan DK, Choudhary RNP, Samantaray BK (2009) Studies of dielectric and electrical properties of plasticized polymer nanocomposite electrolytes. Mater Chem Phys 115:557–561. doi:10.1016/j.matchemphys.2009.01.008

    Article  CAS  Google Scholar 

  51. Jonscher AK (1996) Universal relaxation law. Chelsea Dielectrics Press, London

    Google Scholar 

  52. Kadir MFZA, Teo LP, Majid SR, Arof AK (2009) Conductivity studies on plasticised PEO/chitosan proton conducting polymer electrolyte. Mater Res Innov 13:259–262. doi:10.1179/143307509X440460

    Article  Google Scholar 

  53. Gondaliya N, Kanchan DK, Sharma P, Joge P (2011) Structural and conductivity studies of poly(ethylene oxide)-silver triflate polymer electrolyte system. Mater Sci Appl 2:1639–1643. doi:10.4236/msa.2011.211218

    CAS  Google Scholar 

  54. Deen LMSE (2000) The ac conductivity studies for Cu2O–Bi2O3 glassy system. Mater Chem Phys 65:275–281. doi:10.1016/S0254-0584(00)00244-3

    Article  Google Scholar 

  55. Winie T, Arof AK (2004) Dielectric behaviour and ac conductivity of LiCF3SO3 doped H-chitosan polymer films. Ionics 10:193–199. doi:10.1007/BF02382816

    Article  Google Scholar 

  56. Kufian MZ, Majid SR, Arof AK (2007) Dielectric and conduction mechanism studies of PVA-orthophosphoric acid polymer electrolyte. Ionics 13:231–234. doi:10.1007/s11581-007-0098-7

    Article  CAS  Google Scholar 

  57. Arof AK, Kufian MZ, Syukur MF, Aziz MF, Abdelrahman AE, Majid SR (2012) Electrical double layer capacitor using poly(methyl methacrylate)-C4BO8Li gel polymer electrolyte and carbonaceous material from shells of mata kucing (Dimocarpus longan) fruit. Electrochim Acta 74:39–45. doi:10.1016/j.electacta.2012.03.171

    Article  CAS  Google Scholar 

  58. Woo HJ, Majid SR, Arof AK (2011) Transference number and structural analysis of proton conducting polymer electrolyte based on poly(ε-caprolactone). Mater Res Innov 15:S49–S54. doi:10.1179/143307511X13031890747697

    Article  Google Scholar 

  59. Bhargav PB, Mohan VM, Sharma AK, Rao VVRN (2009) Investigations on electrical properties of (PVA:NaF) polymer electrolytes for electrochemical cell applications. Curr Appl Phys 9:165–171. doi:10.1016/j.cap.2008.01.006

    Article  Google Scholar 

  60. Kumar M, Tiwari T, Srivastava N (2012) Electrical transport behaviour of bio-polymer electrolyte system: Potato starch + ammonium iodide. Carbohydr Polym 88:54–60. doi:10.1016/j.carbpol.2011.11.059

    Article  CAS  Google Scholar 

  61. Watanabe M, Nishimoto A (1995) Effects of network structures and incorporated salt species on electrochemical properties of polyether-based polymer electrolytes. Solid State Ionics 79:306–312. doi:10.1016/0167-2738(95)00089-L

    Article  CAS  Google Scholar 

  62. Kufian MZ, Aziz MF, Shukur MF, Rahim AS, Ariffin NE, Shuhaimi NEA, Majid SR, Yahya R, Arof AK (2012) PMMA-LiBOB gel electrolyte for application in lithium ion batteries. Solid State Ionics 208:36–42. doi:10.1016/j.ssi.2011.11.032

    Article  CAS  Google Scholar 

  63. Arof AK, Shuhaimi NEA, Alias NA, Kufian MZ, Majid SR (2010) Application of chitosan/iota-carrageenan polymer electrolytes in electrical double layer capacitor (EDLC). J Solid State Electrochem 14:2145–2152. doi:10.1007/s10008-010-1050-8

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the University of Malaya for the financial support (Grant no. PG046-2013A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. F. Z. Kadir.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shukur, M.F., Kadir, M.F.Z. Electrical and transport properties of NH4Br-doped cornstarch-based solid biopolymer electrolyte. Ionics 21, 111–124 (2015). https://doi.org/10.1007/s11581-014-1157-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-014-1157-5

Keywords