Skip to main content
Log in

Solid-state synthesis of graphite carbon-coated Li4Ti5O12 anode for lithium ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Graphites are widely used for their high electrical conductivity and good thermal and chemical stability. In this work, graphitic carbon-coated lithium titanium (Li4Ti5O12/GC) was successfully synthesized by a simple one-step solid-state reaction process with the assistance of sucrose without elevating sintering temperature. The lattice fringe of 0.208 nm clearly seen from the high-resolution transmission electron microscopy (HRTEM) images was assigned to graphite (010). The average grain size of the as-prepared Li4Ti5O12/GC was about 100–200 nm, 1 order smaller than that of pure Li4Ti5O12 prepared similarly. The rate performance and cycle ability were significantly improved by the hybrid conducting network formed by graphitic carbon on the grains and amorphous carbon between them. The specific capacity retention rate was 66.7 % when discharged at a rate of 12C compared with the capacity obtained at 0.5C. After 300 cycles, the capacity retention was more than 90 % at a high rate of 15C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kang K, Meng YS, Bréger J, Grey CP, Ceder G (2006) Electrodes with high power and high capacity for rechargeable lithium batteries. Science 311(5763):977–980

    Article  CAS  Google Scholar 

  2. Sun YK, Myung ST, Park BC, Prakash J, Belharouak I, Amine K (2009) High-energy cathode material for long-life and safe lithium batteries. Nat Mater 8(4):320–324

    Article  CAS  Google Scholar 

  3. Kang B, Ceder G (2009) Battery materials for ultrafast charging and discharging. Nature 458(7235):190–193

    Article  CAS  Google Scholar 

  4. Lu X, Zhao L, He X, Xiao R, Gu L, Hu YS, Li H, Wang Z, Duan X, Chen L (2012) Lithium storage in Li4Ti5O12 spinel: the full static picture from electron microscopy. Adv Mater 24(24):3233–3238

    Article  CAS  Google Scholar 

  5. Ohzuku T, Ueda A, Yamamoto N (1995) Zero-strain insertion material of Li(Li1/3Ti5/3)O4 for rechargeable lithium cells. J Electrochem Soc 142(5):1431–1435

    Article  CAS  Google Scholar 

  6. Guerfi A, Sevigny S, Lagace M, Hovington P, Kinoshita K, Zaghib K (2003) Nano-particle Li4Ti5O12 spinel as electrode for electrochemical generators. J Power Sources 119:88–94

    Article  Google Scholar 

  7. Zaghib K, Simoneau M, Armand M, Gauthier M (1999) Electrochemical study of Li4Ti5O12 as negative electrode for Li-ion polymer rechargeable batteries. J Power Sources 81:300–305

    Article  Google Scholar 

  8. Wang Y, Yu X, Xu S, Bai J, Xiao R, Hu YS, Li H, Yang XQ, Chen LQ, Huang XJ (2013) A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries. Nature communications 4: doi:10.1038/ncomms3365

  9. Chen C, Vaughey J, Jansen A, Dees D, Kahaian A, Goacher T, Thackeray M (2001) Studies of Mg-substituted Li4 − x Mg x Ti5O12 spinel electrodes (0 ≤ x ≤ 1) for lithium batteries. J Electrochem Soc 148:A102–A104

    Article  CAS  Google Scholar 

  10. Li X, Qu MZ, Yu ZL (2010) Structural and electrochemical characteristics of Li4 − x K x Ti5O12 as anode material for lithium-ion batteries. Chin J Inorg Chem 26(2):233–239

    Google Scholar 

  11. Zhao H, Li Y, Zhu Z, Lin J, Tian Z, Wang R (2008) Structural and electrochemical characteristics of Li4 − x Al x Ti5O12 as anode material for lithium-ion batteries. Electrochim Acta 53(24):7079–7083

    Article  CAS  Google Scholar 

  12. Yi TF, Shu J, Zhu YR, Zhu XD, Yue CB, Zhou AN, Zhu RS (2009) High-performance Li4Ti5 − x V x O12 (0 ≤ x ≤ 0.3) as an anode material for secondary lithium-ion battery. Electrochim Acta 54(28):7464–7470

    Article  CAS  Google Scholar 

  13. Tian B, Xiang H, Zhang L, Wang H (2012) Effect of Nb-doping on electrochemical stability of Li4Ti5O12 discharged to 0 V. J Solid State Electrochem 16(1):205–211

    Article  CAS  Google Scholar 

  14. Yu H, Zhang X, Jalbout AF, Yan X, Pan X, Xie H, Wang R (2008) High-rate characteristics of novel anode Li4Ti5O12/polyacene materials for Li-ion secondary batteries. Electrochim Acta 53(12):4200–4204

    Article  CAS  Google Scholar 

  15. Bin Kim J, Kim DJ, Chung KY, Byun D, Cho BW (2010) Research on carbon-coated Li4Ti5O12 material for lithium ion batteries. Physica Scripta T139. doi:10.1088/0031-8949/2010/t139/014026

  16. Yuan T, Cai R, Shao ZP (2011) Different effect of the atmospheres on the phase formation and performance of Li4Ti5O12 prepared from ball-milling-assisted solid-phase reaction with pristine and carbon-precoated TiO2 as starting materials. J Phys Chem C 115(11):4943–4952

    Article  CAS  Google Scholar 

  17. Wang J, Liu XM, Yang H, Shen XD (2011) Characterization and electrochemical properties of carbon-coated Li4Ti5O12 prepared by a citric acid sol-gel method. J Alloys Compd 509(3):712–718

    Article  CAS  Google Scholar 

  18. Jung HG, Kim J, Scrosati B, Sun YK (2011) Micron-sized, carbon-coated Li4Ti5O12 as high power anode material for advanced lithium batteries. J Power Sources 196(18):7763–7766

    Article  CAS  Google Scholar 

  19. Li H, Shen L, Zhang X, Wang J, Nie P, Che Q, Ding B (2013) Nitrogen-doped carbon coated Li4Ti5O12 nanocomposite: superior anode materials for rechargeable lithium ion batteries. J Power Sources 221:122–127

    Article  CAS  Google Scholar 

  20. Zhang HQ, Deng QJ, Mou CX, Huang ZL, Wang Y, Zhou AJ, Li JZ (2013) Surface structure and high-rate performance of spinel Li4Ti5O12 coated with N-doped carbon as anode material for lithium-ion batteries. J Power Sources 239:538–545

    Article  CAS  Google Scholar 

  21. Zhao L, Hu YS, Li H, Wang Z, Chen LQ (2011) Porous Li4Ti5O12 coated with N-doped carbon from ionic liquids for Li-ion batteries. Adv Mater 23(11):1385–1388

    Article  CAS  Google Scholar 

  22. Wang YQ, Gu L, Guo YG, Li H, He XQ, Tsukimoto S, Ikuhara Y, Wan LJ (2012) Rutile-TiO2 nanocoating for a high-rate Li4Ti5O12 anode of a lithium-ion battery. J Am Chem Soc 134(18):7874–7879

    Article  CAS  Google Scholar 

  23. Wang J, Zhao H, Yang Q, Wang C, Lv P, Xia Q (2012) Li4Ti5O12-TiO2 composite anode materials for lithium-ion batteries. J Power Sources 222:196–201

    Article  Google Scholar 

  24. Rahman M, Wang JZ, Hassan MF, Wexler D, Liu HK (2011) Amorphous carbon coated high grain boundary density dual phase Li4Ti5O12-TiO2: a nanocomposite anode material for Li-ion batteries. Adv Energy Mater 1(2):212–220

    Article  CAS  Google Scholar 

  25. Kim JG, Shi D, Park MS, Jeong G, Heo YU, Seo M, Kim YJ, Kim JH, Dou SX (2013) Controlled Ag-driven superior rate-capability of Li4Ti5O12 anodes for lithium rechargeable batteries. Nano Res 6(5):365–372

    Article  CAS  Google Scholar 

  26. Zhu GN, Chen L, Wang YG, Wang CX, Che RC, Xia YY (2012) Binary Li4Ti5O12-Li2Ti3O7 nanocomposite as an anode material for Li-ion batteries. Adv Funct Mater 23(5):640–647

    Article  Google Scholar 

  27. Matsui E, Abe Y, Senna M, Guerfi A, Zaghib K (2008) Solid-state synthesis of 70 nm Li4Ti5O12 particles by mechanically activating intermediates with amino acids. J Am Ceram Soc 91(5):1522–1527

    Article  CAS  Google Scholar 

  28. Yu L, Wu HB, Lou XWD (2013) Mesoporous Li4Ti5O12 hollow spheres with enhanced lithium storage capability. Adv Mater 25(16):2296–2300

    Article  CAS  Google Scholar 

  29. Liu J, Li X, Yang J, Geng D, Li Y, Wang D, Li R, Sun X, Cai M, Verbrugge MW (2012) Microwave-assisted hydrothermal synthesis of nanostructured spinel Li4Ti5O12 as anode materials for lithium ion batteries. Electrochim Acta 63:100–104

    Article  CAS  Google Scholar 

  30. Shen L, Uchaker E, Zhang X, Cao G (2012) Hydrogenated Li4Ti5O12 nanowire arrays for high rate lithium ion batteries. Adv Mater 24(48):6502–6506

    Article  CAS  Google Scholar 

  31. Pan H, Zhao L, Hu YS, Li H, Chen L (2012) Improved Li-storage performance of Li4Ti5O12 coated with C-N compounds derived from pyrolysis of urea through a low-temperature approach. ChemSusChem 5(3):526–529

    Article  CAS  Google Scholar 

  32. Mattia D, Rossi MP, Kim BM, Korneva G, Bau HH, Gogotsi Y (2006) Effect of graphitization on the wettability and electrical conductivity of CVD-carbon nanotubes and films. J Phys Chem B 110(20):9850–9855

    Article  CAS  Google Scholar 

  33. Pierson HO (1993) Handbook of carbon, graphite, diamond, and fullerenes: properties, processing, and applications. Noyes Publications Park Ridge Chapter 3

  34. Cheng L, Yan J, Zhu GN, Luo JY, Wang CX, Xia YY (2010) General synthesis of carbon-coated nanostructure Li4Ti5O12 as a high rate electrode material for Li-ion intercalation. J Mater Chem 20(3):595–602

    Article  CAS  Google Scholar 

  35. Amine K, Belharouak I, Chen Z, Tran T, Yumoto H, Ota N, Myung ST, Sun YK (2010) Nanostructured anode material for high-power battery system in electric vehicles. Adv Mater 22(28):3052–3057

    Article  CAS  Google Scholar 

  36. Jung HG, Myung ST, Yoon CS, Son SB, Oh KH, Amine K, Scrosati B, Sun YK (2011) Microscale spherical carbon-coated Li4Ti5O12 as ultra high power anode material for lithium batteries. Energ Environ Sci 4(4):1345–1351

    Article  CAS  Google Scholar 

  37. Borgel V, Gershinsky G, Hu T, Theivanayagam MG, Aurbach D (2013) LiMn0.8Fe0.2PO4/Li4Ti5O12, a possible Li-ion battery system for load-leveling application. J Electrochem Soc 160(4):A650–A657

    Article  CAS  Google Scholar 

  38. Ding Z, Zhao L, Suo L, Jiao Y, Meng S, Hu YS, Wang Z, Chen L (2011) Towards understanding the effects of carbon and nitrogen-doped carbon coating on the electrochemical performance of Li4Ti5O12 in lithium ion batteries: a combined experimental and theoretical study. Phys Chem Chem Phys 13(33):15127–15133

    Article  CAS  Google Scholar 

  39. Franklin RE (1951) Crystallite growth in graphitizing and non-graphitizing carbons. Proc Royal Soc Lond Ser A Math Phys Sci 209(1097):196–218

    Article  CAS  Google Scholar 

  40. Yuan T, Cai R, Gu P, Shao ZP (2010) Synthesis of lithium insertion material Li4Ti5O12 from rutile TiO2 via surface activation. J Power Sources 195(9):2883–2887

    Article  CAS  Google Scholar 

  41. Zhou H, Zhu S, Hibino M, Honma I (2003) Electrochemical capacitance of self-ordered mesoporous carbon. J Power Sources 122(2):219–223

    Article  CAS  Google Scholar 

  42. Pan HL, Hu YS, Li H, Chen LQ (2011) Significant effect of electron transfer between current collector and active material on high rate performance of Li4Ti5O12. Chin Phys B 20(11):118202-1–118202-4. doi:10.1088/1674-1056/20/11/118202

    Article  Google Scholar 

  43. Yuan T, Wang K, Cai R, Ran R, Shao ZP (2009) Cellulose-assisted combustion synthesis of Li4Ti5O12 adopting anatase TiO2 solid as raw material with high electrochemical performance. J Alloys Compd 477(1–2):665–672

    Article  CAS  Google Scholar 

  44. Li X, Qu M, Huai Y, Yu Z (2010) Preparation and electrochemical performance of Li4Ti5O12/carbon/carbon nano-tubes for lithium ion battery. Electrochim Acta 55(8):2978–2982

    Article  CAS  Google Scholar 

  45. Yuan T, Cai R, Wang K, Ran R, Liu SM, Shao ZP (2009) Combustion synthesis of high-performance Li4Ti5O12 for secondary Li-ion battery. Ceram Int 35(5):1757–1768

    Article  CAS  Google Scholar 

  46. Lin ZJ, Hu XB, Huai YJ, Liu L, Deng ZH, Suo JS (2010) One-step synthesis of Li4Ti5O12/C anode material with high performance for lithiumion batteries. Solid State Ionics 181(8–10):412–415

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NSFC (grant nos. 21073029, 11234013, and 51211140045), RFDP (no. 20100185110019), Program for New Century Excellent Talents in University (no. NCET-10-0296), and Fundamental Research Funds for the Central Universities (no. ZYGX2012Z003, 103.1.2 E022050205). The authors thank Miss Ming Liu, working at the Analytical and Testing Center of Sichuan University, China, for her help in TEM characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingze Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Zou, W., Dai, X. et al. Solid-state synthesis of graphite carbon-coated Li4Ti5O12 anode for lithium ion batteries. Ionics 20, 1377–1383 (2014). https://doi.org/10.1007/s11581-014-1103-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-014-1103-6

Keywords

Navigation