Skip to main content
Log in

Conductivity and dielectric relaxation of gelatin films with glycerol as plasticizer

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Gelatin films complexed with ionic salts are of current interest as potential solid polymer electrolytes. However, even without salt, gelatin films are found to have quite high ionic conductivity at room temperature (around 30 °C), when plasticized with an adequate fraction of glycerol. In the present work, the admittance and dielectric properties of gelatin are studied as a function of glycerol content and temperature. An enhancement in the ionic conductivity by four orders of magnitude to ∼9.13 × 10−3 S/m at room temperature is obtained by adding 35.71 wt% of glycerol. This enhancement appears to be correlated with the changes in the local microstructure on plasticizer addition. Admittance and dielectric relaxation have been studied to understand the dynamics of the charge carriers. Differential scanning calorimetry, X-ray diffraction and scanning electron microscopy are also done.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Vincent CA (1987) Prog Solid State Chem 17:145

    Article  CAS  Google Scholar 

  2. Armand M (1994) Solid State Ionics 69:309

    Article  CAS  Google Scholar 

  3. Gray FM (1991) Solid polymer electrolytes. VCH, New York

    Google Scholar 

  4. Tiwari T, Srivastava N, Srivastava PC (2011) Ionics 17:353

    Article  CAS  Google Scholar 

  5. Mattos RI, Pawlicka A, Lima JF, Tombelli CE, Magon CJ, Donoso JP (2010) Elec- trochimica Acta 55:1396

    Article  CAS  Google Scholar 

  6. Basu T, Maitra MG, Middya TR, Tarafdar S (2012) J Phys Chem B 116:11362

    Article  CAS  Google Scholar 

  7. Khiar ASA, Arof AK (2011) World academy of science. Eng Technol 59:23

    Google Scholar 

  8. Buraidah MH, Teo LP, Majid SR, Yahya R, Taha RM, Arof AK (2010) Int. J. of Photoenergy 1

  9. Basu T, Middya TR, Tarafdar S (2013) J. Appl. Polymer science, doi:10.1002/APP.39431

  10. Sugimoto H, Miki T, Kanayama K, Norimoto M (2008) J Non Crystalline Solids 354:3220

    Article  CAS  Google Scholar 

  11. Ayala G, Agudelo A, Vargas R (2012) Dyna 171:138

    CAS  Google Scholar 

  12. Al-Kahlout A, Vieira D, Avellaneda CO, Leite ER, Aegerter MA, Pawlicka A (2010) Ionics 16:13

    Article  CAS  Google Scholar 

  13. Ramasamy P (2012) Ionics 18:413

    Article  CAS  Google Scholar 

  14. Lee CH, Bumpark H, Lee YM, Lee RD (2005) Ind Eng Chem Res 44:7617

    Article  CAS  Google Scholar 

  15. Chew KW, Ng TC, How ZH (2013) Int J Electrochem Sci 8:6354

    CAS  Google Scholar 

  16. Muthulakshmi S, Chithralekha P, Balaji M, Sanjeev G, Pathinettam DP (2013) Indian J. Pure Appl Physics 51:33

    CAS  Google Scholar 

  17. Sownthari K, Suthanthiraraj SA (2013) EXPRESS Polymer Lett 7(6):495

    Article  CAS  Google Scholar 

  18. Singh S, Singh N, Ezekiel R, Kaur A (2011) Carbohydr Polym 83:1521

    Article  CAS  Google Scholar 

  19. Nanda P, De SK, Manna S, De U, Tarafdar S (2010) Nucl Inst MethodsPhys Res B 268:73

    Article  CAS  Google Scholar 

  20. Vieira DF, Avellaneda CO, Pawlicka A (2008) Mol Cryst Liq Cryst 485:843

    Article  Google Scholar 

  21. Pradhan DK, Choudhury RNP, Samantaray BK (2008) Int J ElectrochemSci 3:597

    CAS  Google Scholar 

  22. Kremer F, Schonhals A (eds) (2003) Broad band dielectric spectroscopy. Springer-Verlag Berlin Heidelberg, New York

    Google Scholar 

  23. Baskaram R, Selvasekarapandian S, Hirankumar G, Bhuvaneswari MS (2004) J Power Source 134:235

    Article  Google Scholar 

  24. Dygus JR (2005) Solid State Ionics 176:2065

    Article  Google Scholar 

  25. Jonscher AK (1999) J Phys D Appl Phys 32:R57

    Article  CAS  Google Scholar 

  26. DiStefano JJ III, Stubberud AR, Williams IJ (1990) Theory and problems of feedback and control systems, 2nd edn. Schaums Outline Series, McGraw-Hill, New York

    Google Scholar 

  27. Macdonald JR (1987) Impedance spectroscopy. Wiley, New York

    Google Scholar 

  28. Rodrigues S, Munichandraiah N, Shukla AK (1999) J Solid State Electrochem 3:397

    Article  CAS  Google Scholar 

  29. Manzo SC, Chen R, Rama P (2012) J Fuel Cell Sci Technol 9:051002

    Article  Google Scholar 

  30. Li Tan (2010) Ac impedance spectroscopy analysis of improved proton exchange membrane operation via Direct inlet gas Humidity control, B.S. University Cincinnati.

  31. Schiller CA, Richter F, Gulzow E, Wagner N (2001) N Phys Chem Chem Physics 3:2113

    Article  CAS  Google Scholar 

  32. Nanda P, Maity S, Pandey N, Ray R, Thakur AK, Tarafdar S (2011) Radiat Phys Chem 80:22

    Article  CAS  Google Scholar 

  33. Yin Y An experimental study on PEO polymer electrolyte based all-solid-state supercapacitor, open access dissertations. Paper 440

  34. Burba CM, Woods L, Millar SY, Pallie I (2011) J Electrochim Acta 57(15):165

    Article  CAS  Google Scholar 

  35. Wijstneck R, Wetzel R, Burder E, Hermel H (1988) Colloid Polymer Sci 266:1061

    Article  Google Scholar 

  36. Pea C, Caba KDL, Eceiza A, Ruseckaite R, Mondragon I (2010) Bioresour Technol 101:6836

    Article  Google Scholar 

  37. Silva DLM, Faria DLA, Boodts JFC (2002) J Electroanal Chem 47(532):141

    Article  Google Scholar 

  38. Chen WC, Wen TC, Hu CCA (2002) Gopalan, Electrochim. Acta, 1305

  39. Wald N (2012) Poly(ethylene oxide)/cellulose-nanocrystal nanocomposites as polymer electrolyte membranes, Drexel University

  40. Naidoo S (2005) Cesium hydrogen sulphate and cesium dihydrogen phosphate based solid composite electrolyte for fuel cell application, Chemistry, University of the Western Cape

  41. Avellaneda CO, Vieira DF, Al-Kahlout A, Leite ER, Pawlicka A, Aegerter MA (2007) ElectrochemicaActa 53:1648

    Article  CAS  Google Scholar 

  42. Avellaneda CO, Vieira DF, Al-Kahlout A, Heusing S, Leite ER, Pawlicka A, Aegerter MA (2008) Sol Energy Mater Sol Cells 92:228

    Article  CAS  Google Scholar 

  43. Leones R, Sentanin F, Rodrigues LC, Ferreira RAS, Marrucho IM, Esper- anca JMSS, Pawlicka A, Carlos LD, Silva MM (2012) Opt Mater 35:187

    Article  CAS  Google Scholar 

  44. Tiwari T, Pandey K, Srivastava N, Srivastava PC (2011) J Appl Polymer Sci 121:1

    Article  CAS  Google Scholar 

  45. Avellaneda CO, Vieira DF, AL-Kahlout A, Leite ER, Pawlicka A, Aegerter MA (2007) Electrochim Acta 53:1648

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We are grateful to T. R. Middya for the helpful suggestions and encouragement. The authors sincerely thank Tapan Singha, Metallurgy department, Jadavpur University for the SEM and Sreedip Bera from IACS for the DSC. T. Basu thanks DST, Govt. of India, for the award of INSPIRE research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sujata Tarafdar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basu, T., Tarafdar, S. Conductivity and dielectric relaxation of gelatin films with glycerol as plasticizer. Ionics 20, 1445–1454 (2014). https://doi.org/10.1007/s11581-014-1084-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-014-1084-5

Keywords

PACS Nos.

Navigation