Spontaneous stress-induced oxidation of Ce ions in Gd-doped ceria at room temperature

Abstract

Cerium oxides are widely used within catalysis and fuel cells. The key parameters of interest, including catalytic activity, transport properties and defect structure are all fundamentally linked to the oxidation state of the cerium ions within the material which can adopt a 3+ or 4+ oxidation state. We use Raman spectroscopy, as well as scanning and optical microscopy to show that the oxidation state of cerium ions within Ce0.8Gd0.2O2−x can be altered either through chemically induced strain (imparted during processing), mechanical indentation, fracture or applied mechanical load. This work shows that both the chemical environment and stress state will play a role in determining the oxidation state of the cerium ions within ceria containing materials. It has been shown that the rate of oxidation of Ce0.8Gd0.2O2−x can be dramatically altered at room temperature via changing the local stress state of the material.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Steele BCH, Heinzel A (2001) Materials for fuel-cell technologies. Nature 414:345–352. doi:10.1038/35104620

    CAS  Article  Google Scholar 

  2. 2.

    Trovarelli A (1996) Catalytic properties of ceria and CeO2-containing materials. Catal Rev 38:439–520. doi:10.1080/01614949608006464

    CAS  Article  Google Scholar 

  3. 3.

    Fornasiero P, Graziani M (1999) Use of CeO2-based oxides in the three-way catalysis. Catal Today 50:285–298. doi:10.1016/S0920-5861(98)00510-0

    Article  Google Scholar 

  4. 4.

    Cowin PI, Petit CTG, Lan R, Irvine JTS, Tao S (2011) Recent progress in the development of anode materials for solid oxide fuel cells. Adv Energy Mater 1:314–332. doi:10.1002/aenm.201100108

    CAS  Article  Google Scholar 

  5. 5.

    Trimm DL (2005) Minimisation of carbon monoxide in a hydrogen stream for fuelcell application. Appl Catal A Gen 296:1–11. doi:10.1016/j.apcata.2005.07.011

    CAS  Article  Google Scholar 

  6. 6.

    Chueh WC, Hao Y, Jung WC, Haile SM (2012) High electrochemical activity of the oxide phase in model ceria-Pt and ceria-Ni composite anodes. Nat Mater 11:155–161. doi:10.1038/NMAT3184

    CAS  Article  Google Scholar 

  7. 7.

    Atkinson A, Barnett S, Gorte RJ, Irvine JTS, McEvoy AJ, Mogensen M, Singhal SC, Vohs J (2004) Advanced anodes for high-temperature fuel cells. Nat Mater 3:17–27. doi:10.1038/nmat1040

    CAS  Article  Google Scholar 

  8. 8.

    Badwal SPS, Ciacchi FT, Drennan J (1999) Investigation of the stability of ceria-gadolinia electrolytes in solid oxide fuel cell environments. Solid State Ionics 121:253–263. doi:10.1016/S0167-2738(99)00044-2

    CAS  Article  Google Scholar 

  9. 9.

    Mogensen M, Sammes NM, Tompsett GA (2000) Physical, chemical and electrochemical properties of pure and doped ceria. Solid State Ionics 129:63–94. doi:10.1016/S0167-2738(99)00318-5

    CAS  Article  Google Scholar 

  10. 10.

    Sergo V, Schmid C, Meriani S, Evans AG (1994) Mechanically induced zone darkening of alumina/ceria-stabilized zirconia composites. J Am Ceram Soc 77:2971–2976. doi:10.1111/j.1151-2916.1994.tb04533.x

    CAS  Article  Google Scholar 

  11. 11.

    Hannink RH, Pascoe RT (1975) Ceramic steel. Nature 258:703–704

    Article  Google Scholar 

  12. 12.

    Kossoy A, Feldman Y, Korobko R, Wachtel E, Lubomirsky I (2009) Influence of point-defect reaction kinetics on the lattice parameter of Ce0.8Gd0.2O1.9. Adv Funct Mater 19:634–641. doi:10.1002/adfm.200801162

    CAS  Article  Google Scholar 

  13. 13.

    Kossoy A, Frenkel AI, Feldman Y, Wachtel E, Milner A (2010) The origin of elastic anomalies in thin films of oxygen deficient ceria, CeO2−x . Solid State Ionics 181:1473–1477. doi:10.1016/j.ssi.2010.09.001

    CAS  Article  Google Scholar 

  14. 14.

    Rushton MJD, Chroneos A, Skinner SJ, Kilner JA, Grimes RW (2012) Effect of strain on the oxygen diffusion in yttria and gadolinia co-doped ceria. Solid State Ionics 230:37–42. doi:10.1016/j.ssi.2012.09.015

    Article  Google Scholar 

  15. 15.

    Badwal SPS, Fini D, Ciacchi FT, Munnings C, Kimpton JA, Drennan J (2013) Structural and microstructural stability of ceria-gadolinia electrolyte exposed to reducing environments of high temperature fuel cells. J Mater Chem A 1:10768–10782. doi:10.1039/C3TA11752A

    CAS  Article  Google Scholar 

  16. 16.

    Wojdyr M (2010) Fityk: a general-purpose peak fitting program. J Appl Crystallogr 43:1126–1128. doi:10.1107/S0021889810030499

    CAS  Article  Google Scholar 

  17. 17.

    Bevan DJM (1955) Ordered intermediate phases in the system CeO2-Ce2O3. J Inorg Nucl Chem 1:49–59. doi:10.1016/0022-1902(55)80067-X

    CAS  Article  Google Scholar 

  18. 18.

    Shoko E, Smith MF, McKenzie RH (2011) Charge distribution and transport properties in reduced ceria phases: a review. J Phys Chem 72:1482–1494. doi:10.1016/j.jpcs.2011.09.002

    CAS  Google Scholar 

  19. 19.

    Azad S, Marina OA, Wang CM, Saraf L, Shutthanandan V, McCready DE, El-Azab A, Jaffe JE, Engelhard MH, Peden CHF, Thevuthasan S (2005) Nanoscale effects on ion conductance of layer-by-layer structures of gadolinia-doped ceria and zirconia. Appl Phys Lett 86:131906. doi:10.1063/1.1894615

    Article  Google Scholar 

  20. 20.

    Guo X, Maier J (2009) Ionically conducting two-dimensional heterostructures. Adv Mater 21:2619. doi:10.1002/adma.200900412

    CAS  Article  Google Scholar 

  21. 21.

    Sanna S, Esposito V, Tebano A, Licoccia S, Traversa E, Balestrino G (2010) Enhancement of ionic conductivity in Sm-doped ceria/yttria-stabilized zirconia heteroepitaxial structures. Small 6:1863–1867. doi:10.1002/smll.200902348

    CAS  Article  Google Scholar 

  22. 22.

    Maher RC, Cohen LF, Lohsoontorn P, Brett DJL, Brandon NP (2008) Raman spectroscopy as a probe of temperature and oxidation state for gadolinium-doped ceria used in solid oxide fuel cells. J Phys Chem A 112:1497–1501. doi:10.1021/jp076361j

    CAS  Article  Google Scholar 

  23. 23.

    Robinson RD, Zheng F, Chan SW, Herman IP (2001) Size-dependent properties of CeO2-y nanoparticles as studied by Raman scattering. Phys Rev B PRB 64:245407. doi:10.1103/PhysRevB.64.245407

    Article  Google Scholar 

  24. 24.

    Larché FC, Cahn JW (1985) The interactions of composition and stress in crystalline solids. Acta Metall 33:331–357. doi:10.1016/0001-6160(85)90077-X

    Article  Google Scholar 

  25. 25.

    Larché FC, Cahn JW (1973) Linear theory of thermochemical equilibrium of solids under stress. Acta Metall 21:1051–1063. doi:10.1016/0001-6160(73)90021-7

    Article  Google Scholar 

  26. 26.

    Pannikkat AK, Raj R (1999) Measurement of an electrical potential induced by normal stress applied to the interface of an ionic material at elevated temperatures. Acta Mater 47:3423–3431. doi:10.1016/S1359-6454(99)00206-2

    CAS  Article  Google Scholar 

  27. 27.

    Sheldon BW, Mandowara S, Rankin J (2013) Grain boundary induced compositional stress in nano crystalline ceria films. Solid State Ionics 233:38–46. doi:10.1016/j.ssi.2012.11.006

    CAS  Article  Google Scholar 

  28. 28.

    Sheldon BW, Shenoy VB (2011) Space charge induced surface stresses: implications in ceria and other ionic solids. Phys Rev Lett 106:216104. doi:10.1103/PhysRevLett.106.216104

    Article  Google Scholar 

  29. 29.

    Badwal SPS, Nardella N (1989) Formation of monoclinic zirconia at the anodic face of tetragonal zirconia polycrystalline solid electrolytes. Appl Phys A 49:13–24. doi:10.1007/BF00615460

    Article  Google Scholar 

  30. 30.

    Shannon RD (1976) Revised effective ionic-radii and systematic studies of inter-atomic distances in halides and chalcogenides. Acta Crystallogr A32:751–761. doi:10.1107/S0567739476001551

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Richard Donelson for reviewing this manuscript. This work has been supported through the CSIRO Energy Flagship.

Author information

Affiliations

Authors

Corresponding author

Correspondence to C. Munnings.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Munnings, C., Badwal, S.P.S. & Fini, D. Spontaneous stress-induced oxidation of Ce ions in Gd-doped ceria at room temperature. Ionics 20, 1117–1126 (2014). https://doi.org/10.1007/s11581-014-1079-2

Download citation

Keywords

  • Ceria
  • Fuel cell
  • Catalysis
  • Stress-induced oxidation
  • Microstructure stability of doped ceria