Advertisement

Ionics

, Volume 20, Issue 8, pp 1117–1126 | Cite as

Spontaneous stress-induced oxidation of Ce ions in Gd-doped ceria at room temperature

  • C. Munnings
  • S. P. S. Badwal
  • D. Fini
Original Paper

Abstract

Cerium oxides are widely used within catalysis and fuel cells. The key parameters of interest, including catalytic activity, transport properties and defect structure are all fundamentally linked to the oxidation state of the cerium ions within the material which can adopt a 3+ or 4+ oxidation state. We use Raman spectroscopy, as well as scanning and optical microscopy to show that the oxidation state of cerium ions within Ce0.8Gd0.2O2−x can be altered either through chemically induced strain (imparted during processing), mechanical indentation, fracture or applied mechanical load. This work shows that both the chemical environment and stress state will play a role in determining the oxidation state of the cerium ions within ceria containing materials. It has been shown that the rate of oxidation of Ce0.8Gd0.2O2−x can be dramatically altered at room temperature via changing the local stress state of the material.

Keywords

Ceria Fuel cell Catalysis Stress-induced oxidation Microstructure stability of doped ceria 

Notes

Acknowledgments

The authors would like to thank Richard Donelson for reviewing this manuscript. This work has been supported through the CSIRO Energy Flagship.

References

  1. 1.
    Steele BCH, Heinzel A (2001) Materials for fuel-cell technologies. Nature 414:345–352. doi: 10.1038/35104620 CrossRefGoogle Scholar
  2. 2.
    Trovarelli A (1996) Catalytic properties of ceria and CeO2-containing materials. Catal Rev 38:439–520. doi: 10.1080/01614949608006464 CrossRefGoogle Scholar
  3. 3.
    Fornasiero P, Graziani M (1999) Use of CeO2-based oxides in the three-way catalysis. Catal Today 50:285–298. doi: 10.1016/S0920-5861(98)00510-0 CrossRefGoogle Scholar
  4. 4.
    Cowin PI, Petit CTG, Lan R, Irvine JTS, Tao S (2011) Recent progress in the development of anode materials for solid oxide fuel cells. Adv Energy Mater 1:314–332. doi: 10.1002/aenm.201100108 CrossRefGoogle Scholar
  5. 5.
    Trimm DL (2005) Minimisation of carbon monoxide in a hydrogen stream for fuelcell application. Appl Catal A Gen 296:1–11. doi: 10.1016/j.apcata.2005.07.011 CrossRefGoogle Scholar
  6. 6.
    Chueh WC, Hao Y, Jung WC, Haile SM (2012) High electrochemical activity of the oxide phase in model ceria-Pt and ceria-Ni composite anodes. Nat Mater 11:155–161. doi: 10.1038/NMAT3184 CrossRefGoogle Scholar
  7. 7.
    Atkinson A, Barnett S, Gorte RJ, Irvine JTS, McEvoy AJ, Mogensen M, Singhal SC, Vohs J (2004) Advanced anodes for high-temperature fuel cells. Nat Mater 3:17–27. doi: 10.1038/nmat1040 CrossRefGoogle Scholar
  8. 8.
    Badwal SPS, Ciacchi FT, Drennan J (1999) Investigation of the stability of ceria-gadolinia electrolytes in solid oxide fuel cell environments. Solid State Ionics 121:253–263. doi: 10.1016/S0167-2738(99)00044-2 CrossRefGoogle Scholar
  9. 9.
    Mogensen M, Sammes NM, Tompsett GA (2000) Physical, chemical and electrochemical properties of pure and doped ceria. Solid State Ionics 129:63–94. doi: 10.1016/S0167-2738(99)00318-5 CrossRefGoogle Scholar
  10. 10.
    Sergo V, Schmid C, Meriani S, Evans AG (1994) Mechanically induced zone darkening of alumina/ceria-stabilized zirconia composites. J Am Ceram Soc 77:2971–2976. doi: 10.1111/j.1151-2916.1994.tb04533.x CrossRefGoogle Scholar
  11. 11.
    Hannink RH, Pascoe RT (1975) Ceramic steel. Nature 258:703–704CrossRefGoogle Scholar
  12. 12.
    Kossoy A, Feldman Y, Korobko R, Wachtel E, Lubomirsky I (2009) Influence of point-defect reaction kinetics on the lattice parameter of Ce0.8Gd0.2O1.9. Adv Funct Mater 19:634–641. doi: 10.1002/adfm.200801162 CrossRefGoogle Scholar
  13. 13.
    Kossoy A, Frenkel AI, Feldman Y, Wachtel E, Milner A (2010) The origin of elastic anomalies in thin films of oxygen deficient ceria, CeO2−x. Solid State Ionics 181:1473–1477. doi: 10.1016/j.ssi.2010.09.001 CrossRefGoogle Scholar
  14. 14.
    Rushton MJD, Chroneos A, Skinner SJ, Kilner JA, Grimes RW (2012) Effect of strain on the oxygen diffusion in yttria and gadolinia co-doped ceria. Solid State Ionics 230:37–42. doi: 10.1016/j.ssi.2012.09.015 CrossRefGoogle Scholar
  15. 15.
    Badwal SPS, Fini D, Ciacchi FT, Munnings C, Kimpton JA, Drennan J (2013) Structural and microstructural stability of ceria-gadolinia electrolyte exposed to reducing environments of high temperature fuel cells. J Mater Chem A 1:10768–10782. doi: 10.1039/C3TA11752A CrossRefGoogle Scholar
  16. 16.
    Wojdyr M (2010) Fityk: a general-purpose peak fitting program. J Appl Crystallogr 43:1126–1128. doi: 10.1107/S0021889810030499 CrossRefGoogle Scholar
  17. 17.
    Bevan DJM (1955) Ordered intermediate phases in the system CeO2-Ce2O3. J Inorg Nucl Chem 1:49–59. doi: 10.1016/0022-1902(55)80067-X CrossRefGoogle Scholar
  18. 18.
    Shoko E, Smith MF, McKenzie RH (2011) Charge distribution and transport properties in reduced ceria phases: a review. J Phys Chem 72:1482–1494. doi: 10.1016/j.jpcs.2011.09.002 Google Scholar
  19. 19.
    Azad S, Marina OA, Wang CM, Saraf L, Shutthanandan V, McCready DE, El-Azab A, Jaffe JE, Engelhard MH, Peden CHF, Thevuthasan S (2005) Nanoscale effects on ion conductance of layer-by-layer structures of gadolinia-doped ceria and zirconia. Appl Phys Lett 86:131906. doi: 10.1063/1.1894615 CrossRefGoogle Scholar
  20. 20.
    Guo X, Maier J (2009) Ionically conducting two-dimensional heterostructures. Adv Mater 21:2619. doi: 10.1002/adma.200900412 CrossRefGoogle Scholar
  21. 21.
    Sanna S, Esposito V, Tebano A, Licoccia S, Traversa E, Balestrino G (2010) Enhancement of ionic conductivity in Sm-doped ceria/yttria-stabilized zirconia heteroepitaxial structures. Small 6:1863–1867. doi: 10.1002/smll.200902348 CrossRefGoogle Scholar
  22. 22.
    Maher RC, Cohen LF, Lohsoontorn P, Brett DJL, Brandon NP (2008) Raman spectroscopy as a probe of temperature and oxidation state for gadolinium-doped ceria used in solid oxide fuel cells. J Phys Chem A 112:1497–1501. doi: 10.1021/jp076361j CrossRefGoogle Scholar
  23. 23.
    Robinson RD, Zheng F, Chan SW, Herman IP (2001) Size-dependent properties of CeO2-y nanoparticles as studied by Raman scattering. Phys Rev B PRB 64:245407. doi: 10.1103/PhysRevB.64.245407 CrossRefGoogle Scholar
  24. 24.
    Larché FC, Cahn JW (1985) The interactions of composition and stress in crystalline solids. Acta Metall 33:331–357. doi: 10.1016/0001-6160(85)90077-X CrossRefGoogle Scholar
  25. 25.
    Larché FC, Cahn JW (1973) Linear theory of thermochemical equilibrium of solids under stress. Acta Metall 21:1051–1063. doi: 10.1016/0001-6160(73)90021-7 CrossRefGoogle Scholar
  26. 26.
    Pannikkat AK, Raj R (1999) Measurement of an electrical potential induced by normal stress applied to the interface of an ionic material at elevated temperatures. Acta Mater 47:3423–3431. doi: 10.1016/S1359-6454(99)00206-2 CrossRefGoogle Scholar
  27. 27.
    Sheldon BW, Mandowara S, Rankin J (2013) Grain boundary induced compositional stress in nano crystalline ceria films. Solid State Ionics 233:38–46. doi: 10.1016/j.ssi.2012.11.006 CrossRefGoogle Scholar
  28. 28.
    Sheldon BW, Shenoy VB (2011) Space charge induced surface stresses: implications in ceria and other ionic solids. Phys Rev Lett 106:216104. doi: 10.1103/PhysRevLett.106.216104 CrossRefGoogle Scholar
  29. 29.
    Badwal SPS, Nardella N (1989) Formation of monoclinic zirconia at the anodic face of tetragonal zirconia polycrystalline solid electrolytes. Appl Phys A 49:13–24. doi: 10.1007/BF00615460 CrossRefGoogle Scholar
  30. 30.
    Shannon RD (1976) Revised effective ionic-radii and systematic studies of inter-atomic distances in halides and chalcogenides. Acta Crystallogr A32:751–761. doi: 10.1107/S0567739476001551 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.CSIRO Energy TechnologyClayton SouthAustralia

Personalised recommendations