Skip to main content
Log in

Electrochemical and catalytic investigations of epinephrine, acetaminophen and folic acid at the surface of titanium dioxide nanoparticle-modified carbon paste electrode

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In the present paper, the use of a carbon paste electrode modified with 1-(4-(1, 3-dithiolan-2-yl)-6, 7-dihydroxy-2-methyl-6, 7-dihydrobenzofuran-3-yl)ethanone (DDE) and TiO2 nanoparticles prepared by a simple and rapid method was described. The modified electrode showed excellent properties for electrocatalytic oxidization of epinephrine (EP), acetaminophen (AC) and folic acid (FA). The apparent charge transfer rate constant, k s = 1.14 s−1, and transfer coefficient, α = 0.54, for electron transfer between the modifier and carbon paste electrode were calculated. It has been found that under optimum condition (pH = 7.0) in cyclic voltammetry, the oxidation of EP occurs at a potential about 280 mV less positive than that of an unmodified carbon paste electrode. The values of transfer coefficients (α = 0.46), catalytic rate constant (k = 1.2 × 104 M−1 s−1) and diffusion coefficient (D = 2.70 × 10−5 cm2 s−1) were calculated for EP. Differential pulse voltammetry (DPV) exhibited two linear dynamic ranges of 0.5 to 50.0 μM and 50.0 to 1,000 μM for EP. This modified electrode is quite effective not only for the detection of EP, AC and FA but also for the simultaneous determination of these species in a mixture. The limit of detection for EP, AC and FA is 0.10, 1.80 and 2.36 μM, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mazloum-Ardakani M, Beitollahi H, Sheikh-Mohseni MA, Naeimi H, Taghavinia N (2010) Simultaneous determination of epinephrine and acetaminophen concentrations using a novel carbon paste electrode prepared with 2,2′-[1,2-butanediylbis(nitriloethylidyne)]-bis-hydroquinone and TiO2 nanoparticles. Colloids Surf B 76:82–87

    Article  CAS  Google Scholar 

  2. Hamadanian M, Reisi-Vanani A, Majedi A (2010) Sol–gel preparation and characterization of Co/TiO2 nanoparticles: application to the degradation of methyl orange. J Iran Chem Soc 7:S52–S58

    Article  CAS  Google Scholar 

  3. Mazloum-Ardakani M, Sheikh-Mohseni MA (2011) Carbon nanotubes in electrochemical sensors. In: Naraghi M (ed) Carbon nanotubes—growth and applications. InTech, Croatia

    Google Scholar 

  4. Parham H, Rahbar N (2010) Acetylcholinesterase biosensor based on prussian blue-modified electrode for detecting organophosphorous pesticides. J Hazard Mater 177:1077–1084

    Article  CAS  Google Scholar 

  5. Mazloum-Ardakani M, Dehghani-Firouzabadi A, Rajabzade N, Sheikh-Mohseni MA, Benvidi A, Abdollahi-Alibeik M (2012) MCM/ZrO2 nanoparticles modified electrode for simultaneous and selective voltammetric determination of epinephrine and acetaminophen. J Iran Chem Soc 9:1–5

    Article  Google Scholar 

  6. Sun W, Wang D, Zhai Z, Gao R, Jiao K (2009) Direct electrochemistry of hemoglobin immobilized in the sodium alginate and SiO2 nanoparticles bionanocomposite film on a carbon ionic liquid electrode. J Iran Chem Soc 6:412–419

    Article  CAS  Google Scholar 

  7. Wang J, Deo RP, Poulin P, Mangey M (2003) Carbon nanotube fiber microelectrodes. J Am Chem Soc 125:14706–14707

    Article  CAS  Google Scholar 

  8. Dayton MA, Brown JC, Stutts KJ, Wightman RM (1980) Faradaic electrochemistry at microvoltammetric electrodes. Anal Chem 52:946–950

    Article  CAS  Google Scholar 

  9. Tzong-Rong L, Yau Zen S, Yau-Ching T, Tse-Chuan T, Chung-Chiun L (2005) Size-selective recognition of catecholamines by molecular imprinting on silica-aluminagel. Biosens Bioelectron 21:901–907

    Article  Google Scholar 

  10. Carrera V, Sabater E, Vilanova E, Sogorb MA (2007) A simple and rapid HPLC-MS method for the simultaneous determination of epinephrine, norepinephrine, dopamine and 5-hydroxytryptamine: application to the secretion of bovine chromaffin cell cultures. J Chromatogr B 847:88–94

    Article  CAS  Google Scholar 

  11. Wei S, Song G, Li JM (2005) Separation and determination of norepinephrine, epinephrine and isoprinaline enantiomers by capillary electrophoresis in pharmaceutical formulation and human serum. J Chromatogr A 1098:166–171

    Article  CAS  Google Scholar 

  12. Du JX, Shen LH, Lu JR (2003) Flow injection chemiluminescence determination of epinephrine using epinephrine-imprinted polymer as recognition material. Anal Chim Acta 489:183–189

    Article  CAS  Google Scholar 

  13. Lin Z, Wu X, Lin X, Xie Z (2007) End-column chemiluminescence detection for pressurized capillary electrochromatographic analysis of norepinephrine and epinephrine. J Chromatogr A 1170:118–121

    Article  CAS  Google Scholar 

  14. Canizares P, Luque de Castro MD (1995) On-line coupling of isolation/in situ concentration integrated with derivative synchronous spectrofluorimetry for the simultaneous determination of epinephrine and norepinephrine in urine Anal. Chim Acta 317:335–341

    Article  CAS  Google Scholar 

  15. Solich P, Polydorou CK, Koupparis MA, Efstathiou CE (2000) Automated flow-injection spectrophotometric determination of catecholamines (epinephrine and isoproterenol) in pharmaceutical formulations based on ferrous complex formation. J Pharm Biomed Anal 22:781–789

    Article  CAS  Google Scholar 

  16. Xian Qiao J, Luo HQ, Li NB (2008) Electrochemical behavior of uric acid and epinephrine at an electrochemically activated glassy carbon electrode. Colloids Surf B 62:31–35

    Article  Google Scholar 

  17. Sun Y, Ye B, Wang Y, Tang X, Zhou X (1998) Study on the determination of neurotransmitters using poly(Neutral Red) coated carbon fiber microelectrodes. Microchem J 58:182–191

    Article  CAS  Google Scholar 

  18. Wang HS, Huang DQ, Liu RM (2004) Study on the electrochemical behavior of epinephrine at a poly(3-methylthiophene)-modified glassy carbon electrode. J Electroanal Chem 570:83–90

    Article  CAS  Google Scholar 

  19. Jeong H, Kim H, Jeon S (2004) Modified glassy carbon electrode by electropolymerization of tetrakis-(2-aminopheny)porphyrin for the determination of norepinephrine in the presence of ascorbic acid. Microchem J 78:181–186

    Article  CAS  Google Scholar 

  20. Hu GZ, Zhang DP, Wu WL, Yang ZS (2008) Selective determination of dopamine in the presence of high concentration of ascorbic acid using nano-Au self-assembly glassy carbon electrode. Colloids Surf B 62:199–205

    Article  CAS  Google Scholar 

  21. Sun YX, Wang SF, Zhang XH (2006) Simultaneous determination of epinephrine and ascorbic acid at the electrochemical sensor of triazole SAM modified gold electrode. Sensors Actuators B 113:156–161

    Article  CAS  Google Scholar 

  22. Beitollahi H, Mazloum-Ardakani M, Ganjipour B, Naeimi H (2008) Novel 2,2′-[1,2-ethanediylbis(nitriloethylidyne)]-bis-hydroquinone double-wall carbon nanotube paste electrode for simultaneous determination of epinephrine, uric acid and folic acid. Biosens Bioelectron 24:362–368

    Article  CAS  Google Scholar 

  23. Mazloum-Ardakani M, Rajabzadeh N, Dehghani-Firouzabadi A, Sheikh-Mohseni MA, Benvidi A, Naeimi H, Akbari M, Karshenas A (2012) Carbon nanoparticles and a new derivative of hydroquinone for modification of a carbon paste electrode for simultaneous determination of epinephrine and acetaminophen. J Anal Methods 4:2127–2133

    Article  CAS  Google Scholar 

  24. Tavana T, Khalilzadeh MA, Karimi-Maleh H, Ensafi AA, Beitollahi H, Zareyee D (2012) Sensitive voltammetric determination of epinephrine in the presence of acetaminophen at a novel ionic liquid modified carbon nanotubes paste electrode. J Mol Liq 168:69–74

    Article  CAS  Google Scholar 

  25. Thomas T, Mascarenhas RJ, Martis P, Mekhalif Z, Kumara Swamy BE (2013) Multi-walled carbon nanotube modified carbon paste electrode as an electrochemical sensor for the determination of epinephrine in the presence of ascorbic acid and uric acid. Mater Sci Eng C 33:3294–3302

    Article  CAS  Google Scholar 

  26. Huo J, Li J, Li Q (2013) Study on electrochemical behaviors and the reaction mechanisms of dopamine and epinephrine at the pre-anodized inlaying ultrathin carbon paste electrode with nichrome as a substrate. Mater Sci Eng C 33:507–511

    Article  CAS  Google Scholar 

  27. Wangfuengkanagul N, Chailapakul O (2002) Electrochemical analysis of acetaminophen using a boron-doped diamond thin film electrode applied to flow injection system. J Pharm Biomed Anal 28:841–847

    Article  CAS  Google Scholar 

  28. Andulescu RS, Mirel S, Oprean R (2000) The development of spectrophotometric and electroanalytical methods for ascorbic acid and acetaminophen and their applications in the analysis of effervescent dosage forms. J Pharm Biomed Anal 23:77–87

    Article  Google Scholar 

  29. Peng W, Li T, Li H, Wang E (1994) Direct injection of urine and determination of acetaminophen by micellar liquid chromatography with a wall-jet cell/carbon fibre microelectrode. Anal Chim Acta 298:415–421

    Article  CAS  Google Scholar 

  30. Ghorbani-Bidkorbeh F, Shahrokhian S, Mohammadi A, Dinarvand R (2010) Simultaneous voltammetric determination of tramadol and acetaminophen using carbon nanoparticles modified glassy carbon electrode. Electrochim Acta 55:2752–2759

    Article  CAS  Google Scholar 

  31. Alothman ZA, Bukhari N, Wabaidur SM, Haider S (2010) Simultaneous electrochemical determination of dopamine and acetaminophen using multiwall carbon nanotubes modified glassy carbon electrode. Sensors Actuators B 146:314–320

    Article  CAS  Google Scholar 

  32. Mazloum-Ardakani M, Beitollahi H, Sheikh Mohseni MA, Benvidi A, Naeimi H, Nejati-Barzoki M, Taghavinia N (2010) Simultaneous determination of epinephrine and acetaminophen concentrations using a novel carbon paste electrode prepared with 2,2′-[1,2 butanediylbis(nitriloethylidyne)]-bis-hydroquinone and TiO2 nanoparticles. Colloids Surf B 76:82–87

    Article  CAS  Google Scholar 

  33. Montages MT, Sanchez-Tovar R, Garcia-Anton J, Perez-Herranz V (2010) A gold nanoparticle-modified carbon paste electrode as a sensor for simultaneous determination of acetaminophen and atenolol. Int J Electrochem Sci 5:1922–1933

    Google Scholar 

  34. Thomas T, Mascarenhas RJ, Cotta F, Guha KS, Swamy BEK, Martis P, Mekhalif Z (2013) Poly(Patton and Reeder's reagent) modified carbon paste electrode for the sensitive detection of acetaminophen in biological fluid and pharmaceutical formulations. Colloids Surf B 101:91–96

    Article  CAS  Google Scholar 

  35. Blakley RL (1969) The biochemistry of folic acid and related pteridines. Elsevier, New York

    Google Scholar 

  36. Kim YI (1999) Folate and carcinogenesis: evidence, mechanisms, and implications. J Nutr Biochem 10:66–88

    Article  CAS  Google Scholar 

  37. Prasad BB, Madhuri R, Tiwari MP, Sharma PS (2010) Electrochemical sensor for folic acid based on a hyperbranched molecularly imprinted polymerimmobilized sol–gel-modified pencil graphite electrode. Sensors Actuators B 146:321–330

    Article  CAS  Google Scholar 

  38. Xiao F, Ruan C, Liu L, Yan R, Zhao F, Zeng B (2008) Single-walled carbon nanotube-ionic liquid paste electrode for the sensitive voltammetric determination of folic acid. Sensors Actuators B 134:895–901

    Article  CAS  Google Scholar 

  39. Daya S, Anoopkumar-Dukie S (2000) Acetaminophen inhibits liver tryptophan-2,3-dioxygenase activity with a concomitant rise in brain serotonin levels and a reduction in urinary 5-hydroxyindole acetic acid. Life Sci 67:235–240

    Article  CAS  Google Scholar 

  40. Li SXM, Perry KW, Wong DT (2002) Influence of fluoxetine on the ability of bupropion to modulate extracellular dopamine and norepinephrine concentrations in three mesocorticolimbic areas of rats. Neuropharmacology 42:181–190

    Article  CAS  Google Scholar 

  41. Maharaj H, Maharaj DS, Saravanan KS, Mohanakumar KP, Daya S (2004) Aspirin curtails the acetaminophen-induced rise in brain norepinephrine levels. Metab Brain Dis 19:71–77

    Article  CAS  Google Scholar 

  42. Paul RTP, McDonnell AP, Kelly CB (2004) Folic acid: neurochemistry, metabolism and relationship to depression. Hum Psychopharmacol Clin Exp 19:477–488

    Article  CAS  Google Scholar 

  43. Mazloum-Ardakani M, Khoshroo A, Nematollahi D, Mirjalili BF (2012) Electrochemical study of catechol derivatives in the presence of β-diketones: synthesis of benzofuran derivatives. J Electrochem Soc 159:H912–H917

    Article  CAS  Google Scholar 

  44. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  45. Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem 101:19–28

    Article  CAS  Google Scholar 

  46. Sharp M, Petersson M, Edstrom KJ (1979) Preliminary determinations of electron transfer kinetics involving ferrocene covalently attached to a platinum surface. J Electroanal Chem 95:123–130

    Article  CAS  Google Scholar 

  47. Antoniadou S, Jannakoudakis A, Theodoridou E (1989) Electrocatalytic reactions on carbon fibre electrodes modified by hemine II. Electro-oxidation of hydrazine. Synth Met 30:295–304

    Article  CAS  Google Scholar 

  48. Mazloum-Ardakani M, Beitollahi H, Amini MK, Mirkhalaf F, Abdollahi-Alibeik M (2011) Simultaneous and selective voltammetric determination of epinephrine, acetaminophen and folic acid at a ZrO2 nanoparticles modified carbon paste electrode. Anal Methods 3:673–677

    Article  CAS  Google Scholar 

  49. Wang L, Bai J, Huang P, Wang H, Zhang L, Zhao Y (2006) Electrochemical behavior and determination of eat a penicillamine self-assembled gold electrode. Int J Electrochem Sci 1:238–249

    Article  CAS  Google Scholar 

  50. Ren W, Qun LH, Li NB (2006) Simultaneous voltammetric measurement of ascorbic acid, epinephrine and uric acid at a glassy carbon electrode modified with caffeic acid. Biosens Bioelectron 21:1086–1092

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Yazd University Research Council, Chemistry & Chemical Engineering Research Center of Iran and Excellence in Sensors for the financial support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mazloum-Ardakani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazloum-Ardakani, M., Ahmadi, S.H., Mahmoudabadi, Z.S. et al. Electrochemical and catalytic investigations of epinephrine, acetaminophen and folic acid at the surface of titanium dioxide nanoparticle-modified carbon paste electrode. Ionics 20, 1757–1765 (2014). https://doi.org/10.1007/s11581-014-1068-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-014-1068-5

Keywords

Navigation