Skip to main content
Log in

Relaxation process in chitosan–oxalic acid solid polymer electrolytes

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

We investigate the room temperature frequency dependence of electrical modulus for the polymer electrolytes consisting of chitosan and oxalic acid in the frequency range from 50 Hz to 1 MHz. Oxalic acid serves as the proton provider. It is found that the lowest imaginary electrical modulus is shown by the highest conducting sample OA40, which contains 60 wt.% chitosan and 40 wt.% oxalic acid. The electrical moduli for OA40 sample membrane at different temperatures are also studied, and the peak of the imaginary electrical modulus has been observed to shift towards higher frequency with increasing temperature. This indicates that relaxation is thermally assisted. Analysis of electrical modulus shows that the main relaxation process in chitosan–oxalic acid polymer electrolyte system is a non-Debye process associated with viscoelastic relaxation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ravi Kumar MNV (2000) React Funct Polym 46:1–27

    Article  Google Scholar 

  2. Mukoma P, Jooste BR, Vosloo HCMJ (2004) J Power Sources 136:16–23

    Article  CAS  Google Scholar 

  3. Smitha B, Anjali Devi D, Sridhar S (2008) Int J Hydrog Energy 33:4138–4146

    Article  CAS  Google Scholar 

  4. Ng LS, Mohamad AA (2008) J Membr Sci 325:653–657

    Article  CAS  Google Scholar 

  5. Arof AK, Osman Z, Morni NM, Kamarulzaman N, Ibrahim ZA, Muhamad MR (2001) J Membr Sci 36:791–783

    CAS  Google Scholar 

  6. Boroglu MS, Celik SU, Bozkurt A, Boz I (2011) J Membr Sci 375:157–164

    Article  CAS  Google Scholar 

  7. Goktepe F, Celik SU, Bozkurt A (2008) J Non-Cryst Solids 354:3637–3642

    Article  CAS  Google Scholar 

  8. Mohamed NS, Subban RHY, Arof AK (1995) J Power Sources 56:153–156

    Article  CAS  Google Scholar 

  9. Morni NM, Arof AK (1999) J Power Sources 77:42–48

    Article  CAS  Google Scholar 

  10. Morni NM, Mohamed NS, Arof AK (1997) Mater Sci Eng B 45:140–146

    Article  Google Scholar 

  11. Subban RHY, Arof AK, Radhakrishna S (1996) Mater Sci Eng B 38:156

    Article  Google Scholar 

  12. Ng LS, Mohamad AA (2006) J Power Sources 163:382–385

    Article  CAS  Google Scholar 

  13. Tangaris GM, Psarras GC, Kouloumbi N (1998) J Mater Sci 33:2027–2037

    Article  Google Scholar 

  14. Woo HJ, Majid SR, Arof AK (2012) Mater Chem Phys 134:755–761

    Article  CAS  Google Scholar 

  15. Belattar J, Achour ME, Brosseau C (2011) J Appl Phys 110(054101):1–7

    Google Scholar 

  16. Cosgun S, Celik SU, Baykal A, Bozkurt A (2010) Curr Appl Phys 10:133–137

    Article  Google Scholar 

  17. Dziaugys A, Banys J, Samulionis V, Vysochanskii Y (2008) Ultragarsas 63:7–10

    Google Scholar 

  18. Greicius S, Banys J, Szafraniak-Wiza I (2009) Process Appl Ceram 3:85–87

    Article  CAS  Google Scholar 

  19. Diaz Calleja R, Matveeva ES, Parkhutik VP (1995) J Non-Cryst Solids 180:260–265

    Article  CAS  Google Scholar 

  20. Ai L, Jiang J, Li L (2010) J Mater Sci 21:206–210

    CAS  Google Scholar 

  21. Dasari MP, Sambasiva Rao K, Krishna PM, Krishna GG (2011) Acta Phys Pol A 119:387–394

    CAS  Google Scholar 

  22. Mohomed K, Gerasimov TG, Moussy F, Harmon JP (2005) Polymer 46:3847–3855

    Article  CAS  Google Scholar 

  23. El-Nahass MM, Farid AM, Abd El-Rahman KF, Ali HAM (2008) Phys B 403:2331–1337

    Article  CAS  Google Scholar 

  24. Choi B-K, Kim Y-W (2004) Electrochim Acta 49:2307–2313

    Article  CAS  Google Scholar 

  25. Cheruku R, Govindaraj LG (2012) Mater Sci Eng B 177:771–779

    Article  CAS  Google Scholar 

  26. Lopes AC, Costa CM, Sabater i Serra R, Neves IC, Gomez Ribelles JL, Lanceros-Mendez S (2013) Solid State Ionics 235:42–50

    Article  CAS  Google Scholar 

  27. Pradhan DK, Choudhary RNP, Samataray BK (2008) Express Polym Lett 2:630–638

    Article  CAS  Google Scholar 

  28. Psarras GC, Gatos KG, Karahaliou PK, Georga SN, Krontiras CA, Karger-Kocsis J (2007) Express Polym Lett 1:837–845

    Article  CAS  Google Scholar 

  29. Pissis P, Kyritsis A (1997) Solid State Ionics 97:105–113

    Article  CAS  Google Scholar 

  30. Krishnakumar V, Shanmugam G (2012) Ionics 18:403–411

    Article  CAS  Google Scholar 

  31. Ayesh AS (2009) Polym J 41:616–621

    Article  CAS  Google Scholar 

  32. Ambrus JH, Moynihan CT, Macedo CB (1972) J Phys Chem 76:32873295

    Google Scholar 

  33. Money BK, Hariharan K, Swenson J (2012) J Phys Chem B 116:7762–7770

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to express gratitude to University Malaya for research grant PV059-2012A (PPP Grant) and FP035-2012A. The authors also would like to express heartfelt gratitude to Ms. Leeana Ismail for her assistance in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Arof.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fadzallah, I.A., Majid, S.R., Careem, M.A. et al. Relaxation process in chitosan–oxalic acid solid polymer electrolytes. Ionics 20, 969–975 (2014). https://doi.org/10.1007/s11581-013-1058-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-013-1058-z

Keywords

Navigation