Ionics

, Volume 20, Issue 7, pp 949–955 | Cite as

Study of the electrochemical performance of VO2+/VO2+ redox couple in sulfamic acid for vanadium redox flow battery

  • Zhangxing He
  • Yaoyi He
  • Chen Chen
  • Shuai Yang
  • Jianlei Liu
  • Zhen He
  • Suqin Liu
Original Paper

Abstract

The present work was performed in order to evaluate sulfamic acid as the supporting electrolyte for VO2+/VO2+ redox couple in vanadium redox flow battery. The oxidation process of VO2+ has similar electrochemical kinetics compared with the reduction process of VO2+. The exchange current density and standard rate constant of VO2+/VO2+ redox reaction on a graphite electrode in sulfamic acid are determined as 7.6 × 10−4 A cm−2 and 7.9 × 10−5 cm s−1, respectively. The energy efficiency of the cell employing sulfamic acid as supporting electrolyte in the positive side can reach 75.87 %, which is adequate for redox flow battery applied in energy storage. The addition of NH4+ to the positive electrolyte can enhance the electrochemical performance of the cell, with larger discharge capacity and energy efficiency. The preliminary exploration shows that the vanadium sulfamate electrolyte is promising for vanadium redox flow battery and is worthy of further study.

Keywords

Vanadium redox flow battery Supporting electrolyte Sulfamic acid Electrochemical kinetics 

References

  1. 1.
    Li LY, Kim S, Wang W, Vijayakumar M, Nie ZM, Chen BW, Zhang JL, Xia GG, Hu JZ, Graff G, Liu J, Yang ZG (2011) Adv Energy Mater 1:394CrossRefGoogle Scholar
  2. 2.
    Xiong F, Zhou D, Xie Z, Chen Y (2012) Appl Energy 99:291CrossRefGoogle Scholar
  3. 3.
    Suzuki Y, Koyanagi A, Kobayashi M, Shimada R (2005) Energy 30:2128CrossRefGoogle Scholar
  4. 4.
    Hartikainen T, Mikkonen R, Lehtonen J (2007) Appl Energy 84:29CrossRefGoogle Scholar
  5. 5.
    Cedzynska K (1995) Electrochim Acta 40:971CrossRefGoogle Scholar
  6. 6.
    Oriji G, Katayama Y, Miura T (2004) Electrochim Acta 49:3091CrossRefGoogle Scholar
  7. 7.
    Xia X, Liu HT, Liu Y (2002) J Electrochem Soc 149:A426CrossRefGoogle Scholar
  8. 8.
    Wen YH, Zhang HM, Qian P, Zhou HT, Zhao P, Yi BL, Yang YS (2006) J Electrochem Soc 153:A929CrossRefGoogle Scholar
  9. 9.
    Xue FQ, Wang YL, Wang WH, Wang XD (2008) Electrochim Acta 53:6636CrossRefGoogle Scholar
  10. 10.
    Tang C, Zhou DB (2012) Electrochim Acta 65:179CrossRefGoogle Scholar
  11. 11.
    Rahman F, Skyllas-Kazacos M (2009) J Power Sources 189:1212CrossRefGoogle Scholar
  12. 12.
    Sun B, Skyllas-Kazacos M (1992) Electrochim Acta 37:1253CrossRefGoogle Scholar
  13. 13.
    Kim S, Yan J, Schwenzer B, Zhang J, Li L, Liu J, Yang Z, Hickner MA (2010) Electrochem Commun 12:1650CrossRefGoogle Scholar
  14. 14.
    Skyllas-Kazacos M, Rychcik M, Robins RG, Fane AG, Green MA (1986) J Electrochem Soc 133:1057CrossRefGoogle Scholar
  15. 15.
    Wei Y, Fang B, Arai T, Kumagai M (2005) J Appl Electrochem 35:561CrossRefGoogle Scholar
  16. 16.
    Leung PK, Ponce de León C, Low CTJ, Walsh FC (2011) Electrochim Acta 56:2145CrossRefGoogle Scholar
  17. 17.
    Peng S, Wang NF, Wu XJ, Liu SQ, Fang D, Liu YN, Huang KL (2012) Int J Electrochem Sci 7:643Google Scholar
  18. 18.
    Kim S, Vijayakumar M, Wang W, Zhang J, Chen B, Nie Z, Chen F, Hu J, Li L, Yang Z (2011) Phys Chem Chem Phys 13:18186CrossRefGoogle Scholar
  19. 19.
    Bober P, Trchová M, Prokeš J, Varga M, Stejskal J (2011) Electrochim Acta 56:3580CrossRefGoogle Scholar
  20. 20.
    Ameen S, Ali V, Zulfequar M, Mazharul Haq M, Husain M (2007) Curr Appl Phys 7:215CrossRefGoogle Scholar
  21. 21.
    Yadav JS, Purushothama Rao P, Sreenu D, Rao RS, Naveen Kumar V, Nagaiah K, Prasad AR (2005) Tetrahedron Lett 46:7249CrossRefGoogle Scholar
  22. 22.
    Rostami A, Tavakoli A (2011) Chin Chem Lett 22:1317CrossRefGoogle Scholar
  23. 23.
    Kanda FA, King AJ (1951) J Am Chem Soc 73:2315CrossRefGoogle Scholar
  24. 24.
    Heravi MM, Alinejhad H, Bakhtiari K, Oskooie HA (2010) Mol Divers 14:621CrossRefGoogle Scholar
  25. 25.
    Heravi MM, Baghernejad B, Oskooie HA (2009) Curr Org Chem 13:1002CrossRefGoogle Scholar
  26. 26.
    Kazacos M, Cheng M, Skyllas-Kazacos M (1990) J Appl Electrochem 20:463CrossRefGoogle Scholar
  27. 27.
    Zhong S, Skyllas-Kazacos M (1992) J Power Sources 39:1CrossRefGoogle Scholar
  28. 28.
    Wu X, Wang J, Liu S, Wu X, Li S (2011) Electrochim Acta 56:10197CrossRefGoogle Scholar
  29. 29.
    Xie Z, Zhou D, Xiong F, Zhang S, Huang K (2011) J Rare Earth 29:567CrossRefGoogle Scholar
  30. 30.
    Wu X, Liu S, Wang N, Peng S, He Z (2012) Electrochim Acta 78:475CrossRefGoogle Scholar
  31. 31.
    Fang B, Iwasa S, Wei Y, Arai T, Kumagai M (2002) Electrochim Acta 47:3971CrossRefGoogle Scholar
  32. 32.
    Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamental and applications. Wiley, New York, p 231Google Scholar
  33. 33.
    Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamental and applications. Wiley, New York, p 236Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Zhangxing He
    • 1
  • Yaoyi He
    • 1
  • Chen Chen
    • 1
  • Shuai Yang
    • 1
  • Jianlei Liu
    • 1
  • Zhen He
    • 1
  • Suqin Liu
    • 1
  1. 1.Key Laboratory of Resources Chemistry of Nonferrous Metals, Ministry of Education, School of Chemistry and Chemical EngineeringCentral South UniversityChangshaChina

Personalised recommendations