Advertisement

Ionics

, Volume 20, Issue 6, pp 803–808 | Cite as

Three-dimensional carbon fiber as current collector for lithium/sulfur batteries

  • Yongguang Zhang
  • Zhumabay Bakenov
  • Yan Zhao
  • Aishuak Konarov
  • Qiang Wang
  • P. Chen
Original Paper

Abstract

Ni foam and carbon fiber cloth were tested as three-dimensional (3D) current collectors for a sulfur/polypyrrole composite cathode in lithium batteries. The cell with the carbon fiber current collector has exhibited remarkably enhanced electrochemical performance compared with its Ni foam counterpart, delivering a high initial capacity of 1,278 mAh g−1 and maintaining a discharge capacity at 810 mAh g−1 after 40 cycles at 0.06 C. Furthermore, the carbon fiber-based cell demonstrated a better rate capability and delivered a highly reversible discharge capacity of 397 mAh g−1 after 50 cycles at 0.5 C, representing an increase of 194 mAh g−1 compared to the Ni foam counterpart. The electrochemical property investigations along with scanning electron microscope studies have revealed that the carbon fiber current collector possesses a three-dimensional network structure, provides an effective electron conduction path, and minimizes the loss of electrical contact within the deposited cathode material during cycling. These results indicate that the carbon fiber cloth can be used as a promising, effective, and inexpensive current collector for Li/S batteries.

Keywords

Lithium/sulfur battery Sulfur cathode Sulfur/polypyrrole composite Current collector Carbon fiber 

Notes

Acknowledgments

This research was financially supported by Positec, the Natural Sciences and Engineering Research Council of Canada (NSERC), Canadian Foundation for Innovation (CFI), and the Canada Research Chairs (CRC) Program. One of the authors (YZ) thanks the China Scholarship Council for the Study Abroad Scholarship. ZB thanks a grant from the Ministry of Education and Science of the Republic of Kazakhstan (# 0112PK02992).

References

  1. 1.
    Tischer RP (1983) The sulfur electrode. Academic, New YorkGoogle Scholar
  2. 2.
    Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM (2012) Li-O2 and Li-S batteries with high energy storage. Nat Mater 11:19–29CrossRefGoogle Scholar
  3. 3.
    Zhang Y, Zhao Y, Sun KEK, Chen P (2011) Development in lithium/sulfur secondary batteries. Open Mater Sci J 5:215–221CrossRefGoogle Scholar
  4. 4.
    Yamin H, Gorenshtein A, Penciner J, Sternberg Y, Peled E (1988) Lithium sulphur battery. Oxidation/reduction mechanisms of polysulphides in THF solution. J Electrochem Soc 135:1045–1048CrossRefGoogle Scholar
  5. 5.
    Shim J, Striebel KA, Cairns EJ (2002) The lithium/sulfur rechargeable cell: effects of electrode composition and solvent on cell performance batteries and energy conversion. J Electrochem Soc 149:A1321–A1325CrossRefGoogle Scholar
  6. 6.
    Zhao Y, Zhang Y, Gosselink D, Doan TNL, Sadhu M, Cheang HJ, Chen P (2012) Polymer electrolytes for lithium/sulfur batteries. Membranes 2:553–564CrossRefGoogle Scholar
  7. 7.
    Zhang Y, Zhao Y, Konarov A, Gosselink D, Soboleski HG, Chen P (2013) A novel nano-sulfur/polypyrrole/graphene nanocomposite cathode with a dual-layered structure for lithium rechargeable batteries. J Power Sources 241:517–521CrossRefGoogle Scholar
  8. 8.
    Ding B, Yuan C, Shen L, Xu G, Nie P, Zhang X (2013) Encapsulating sulfur into hierarchically ordered porous carbon as a high-performance cathode for lithium-sulfur batteries. Chem Eur J 19:1013–1019CrossRefGoogle Scholar
  9. 9.
    Hassoun J, Scrosati B (2010) A high-performance polymer Tin sulfur lithium ion battery. Angew Chem Int Ed 49:2371–2374CrossRefGoogle Scholar
  10. 10.
    Zhang Y, Zhao Y, Doan TNL, Konarov A, Gosselink D, Soboleski HG, Chen P (2013) A novel sulfur/polypyrrole/multi-walled carbon nanotube nanocomposite cathode with core-shell tubular structure for lithium rechargeable batteries. Solid State Ionics 238:30–35CrossRefGoogle Scholar
  11. 11.
    Choi YJ, Kim KW, Ahn HJ, Ahn JH (2008) Improvement of cycle property of sulfur electrode for lithium/sulfur battery. J Alloy Compd 449:313–316CrossRefGoogle Scholar
  12. 12.
    Zhang Y, Zhao Y, Yermukhambetova A, Bakenov Z, Chen P (2013) Ternary sulfur/polyacrylonitrile/Mg0.6Ni0.4O composite cathode for high performance lithium/sulfur batteries. J Mater Chem A 1:295–301CrossRefGoogle Scholar
  13. 13.
    Zhang Y, Zhao Y, Bakenov Z, Babaa MR, Konarov A, Ding C, Chen P (2013) Effect of graphene on sulfur/Polyacrylonitrile nanocomposite cathode in high performance lithium/sulfur batteries. J Electrochem Soc 160:A1194–A1198CrossRefGoogle Scholar
  14. 14.
    Fu Y, Manthiram A (2012) Core-shell structured sulfur-polypyrrole composite cathodes for lithium-sulfur batteries. RSC Adv 2:5927–5929CrossRefGoogle Scholar
  15. 15.
    Zhang Y, Bakenov Z, Zhao Y, Konarov A, Doan TNL, Malik M, Paron T, Chen P (2012) One-step synthesis of branched sulfur/polypyrrole nanocomposite cathode for lithium rechargeable batteries. J Power Sources 208:1–8CrossRefGoogle Scholar
  16. 16.
    Wei W, Wang J, Zhou L, Yang J, Schumann B, Li YN (2011) CNT enhanced sulfur composite cathode material for high rate lithium battery. Electrochem Commun 13:399–402CrossRefGoogle Scholar
  17. 17.
    Barchasz C, Mesguich F, Dijon J, Leprêtre JC, Patoux S, Alloin F (2012) Novel positive electrode architecture for rechargeable lithium/sulfur batteries. J Power Sources 211:19–26CrossRefGoogle Scholar
  18. 18.
    Wang L, He X, Li J, Gao J, Fang M, Tian G, Wang J, Fan S (2013) Graphene-coated plastic film as current collector for lithium/sulfur batteries. J Power Sources 239:623–627CrossRefGoogle Scholar
  19. 19.
    Kim H, Lee JT, Yushin G (2013) High temperature stabilization of lithium-sulfur cells with carbon nanotube current collector. J Power Sources 226:256–265CrossRefGoogle Scholar
  20. 20.
    Kim TK, Chen W, Wang C (2011) Heat treatment effect of the Ni foam current collector in lithium ion batteries. J Power Sources 196:8742–8746CrossRefGoogle Scholar
  21. 21.
    Sa Q, Wang Y (2012) Ni foam as the current collector for high capacity C-Si composite electrode. J Power Sources 208:46–51CrossRefGoogle Scholar
  22. 22.
    Yao M, Okuno K, Iwaki T, Awazu T, Sakai T (2010) Long cycle-life LiFePO4/Cu-Sn lithium ion battery using foam-type three-dimensional current collector. J Power Sources 195:2077–2081CrossRefGoogle Scholar
  23. 23.
    Ji X, Liu DY, Prendiville DG, Zhang Y, Liu X, Stucky GD (2012) Spatially heterogeneous carbon-fiber papers as surface dendrite-free current collectors for lithium deposition. Nano Today 7:10–20CrossRefGoogle Scholar
  24. 24.
    Yu Y, Chen CH, Shui JL, Xie S (2005) Nickel-foam-supported reticular CoO-Li2O composite anode materials for lithium ion batteries. Angew Chem Int Ed 44:7085–7089CrossRefGoogle Scholar
  25. 25.
    Yu Y, Shi Y, Chen CH, Wang C (2008) Facile electrochemical synthesis of single-crystalline copper nanospheres, pyramids, and truncated pyramidal nanoparticles from lithia/cuprous oxide composite thin films. J Phys Chem C 112:4176–4179CrossRefGoogle Scholar
  26. 26.
    Shafiei M, Alpas AT (2011) Electrochemical performance of a tin-coated carbon fibre electrode for rechargeable lithium-ion batteries. J Power Sources 196:7771–7778CrossRefGoogle Scholar
  27. 27.
    Zhao Y, Zhang Y, Bakenov Z, Chen P (2013) Electrochemical performance of lithium gel polymer battery with nanostructured sulfur/carbon composite cathode. Solid State Ionics 234:40–45CrossRefGoogle Scholar
  28. 28.
    Zhang Y, Zhao Y, Konarov A, Gosselink D, Li Z, Ghaznavi M, Chen P (2013) One pot approach to synthesize PPy@S core-shell nanocomposite cathode for Li/S batteries. J Nanopart Res 15:2007CrossRefGoogle Scholar
  29. 29.
    Marmorstein D, Yu TH, Striebel KA, McLarnon FR, Hou J, Cairns EJ (2000) Electrochemical performance of lithium/sulfur cells with three different polymer electrolytes. J Power Sources 89:219–226CrossRefGoogle Scholar
  30. 30.
    Han DH, Kim BS, Choi SJ, Jung Y, Kwak J, Park SM (2004) Time-resolved in situ spectroelectrochemical study on reduction of sulfur in N, N' -Dimethylformamide physical and analytical electrochemistry. J Electrochem Soc 151:E283–E290CrossRefGoogle Scholar
  31. 31.
    Bakenov Z, Taniguchi I (2010) Physical and electrochemical properties of LiMnPO4/C composite cathode prepared with different conductive carbons. J Power Sources 195:7445–7451CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yongguang Zhang
    • 1
  • Zhumabay Bakenov
    • 2
  • Yan Zhao
    • 1
  • Aishuak Konarov
    • 1
  • Qiang Wang
    • 1
  • P. Chen
    • 1
  1. 1.Department of Chemical EngineeringUniversity of WaterlooWaterlooCanada
  2. 2.School of EngineeringNazarbayev UniversityAstanaKazakhstan

Personalised recommendations