Skip to main content
Log in

Structural, electrical and dielectric studies of nanocrystalline LiMnPO4 particles

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Olivine-structured LiMnPO4 nanoparticles were prepared by microwave-assisted solvothermal method. The as obtained LiMnPO4 sample was characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM) and impedance spectroscopy techniques. The XRD pattern confirms the formation of LiMnPO4 phase with an orthorhombic structure. The electrical conductivity of the sample at room temperature is found to be 1.2654 × 10−7 S cm−1. Dielectric spectra show an increase in dielectric constant with increase of temperature. The dielectric loss spectra reveal the predomination of DC conduction in the sample. The modulus studies indicate the non-Debye nature of the sample which corresponds to the distribution of elements in the sample. Galvanostatic battery testing showed that LiMnPO4 nanoparticles displayed good cycleability in 30 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Delacourt C, Laffont L, Bouchet R, Wurm C, Leriche JB, Morcrette M, Tarascon JM, Masquelier C (2005) Toward understanding of electricalLimitations (Electronic, Ionic) in LiMPO4 (M = Fe, Mn) electrode materials. J Electrochem Soc 152:A913

    Google Scholar 

  2. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho‐olivines as positive‐electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188

    Google Scholar 

  3. Yonemura M, Yamada A, Takei Y, Sonoyama N, Kanno R (2004) Comparative Kinetic Study of Olivine LixMPO4 (M = Fe, Mn). J Electrochem Soc 151:A1352

    Google Scholar 

  4. Zhou F, Cococcioni M, Kang K, Ceder G (2004) The Li intercalation potential of LiMPO4 and LiMSiO4 olivines with M = Fe, Mn, Co, Ni. Electrochem Commun 6:1144

    Google Scholar 

  5. Wolfenstine J, Allen J (2005) Ni3+/Ni2+ redox potential in LiNiPO4. J Power Sources 142:389

    Google Scholar 

  6. Amine K, Yasuda H, Yamachi M (2000) Olivine LiCoPO4 as 4.8V electrode material for lithium batteries. Electrochem Solid-State Lett 3:178

    Google Scholar 

  7. Yang JS, Xu JJ (2006) Synthesis and characterization of carbon-coated lithium transition metal phosphates LiMPO4 (M = Fe, Mn, Co, Ni) prepared via a nonaqueous sol-gel route. J Electrochem Soc 153:716

    Google Scholar 

  8. Choi D, Wang D, Bae IT, Xiao J, Nie Z, Wang W, Viswanathan VV, Lee YJ, Zhang JG, Graff GL, Yang Z, Liu J (2010) LiMnPO4 nanoplate grown via solid-state reaction in molten hydrocarbon for Li-Ion battery cathode. Nano Lett 10:2799

    Google Scholar 

  9. Oh SM, Oh SW, Yoon CS, Scrosati B, Amine K, Sun Y-K (2010) High-performance carbon-LiMnPO4 nanocomposite cathode for lithium batteries. Adv Funct Mater 20:3260

    Google Scholar 

  10. Rangappa D, Sone K, Ichihara M, Kudo T, Honma I (2010) Rapid one-pot synthesis of LiMPO4 (M = Fe, Mn) colloidal nanocrystals by supercritical ethanol process. Chem Commun 46:7548

    Google Scholar 

  11. Fang HS, Li LP, Yang Y, Yan GF, Li GS (2008) Carbonate anions controlled morphological evolution of LiMnPO4 crystals. Chem Commun 1118

  12. Bakenov Z, Taniguchi I (2010) Electrochemical performance of nanocomposite LiMnPO4/C cathode materials for lithium batteries. Electrochem Commun 12:75

    Google Scholar 

  13. Kumar PR, Venkateswarlu M, Misra M, Mohanty AK, Satyanarayana N (2011) Carbon Coated LiMnPO4 Nanorods for Lithium Batteries. J Electrochem Soc 158:227

    Google Scholar 

  14. Baek DH, Kim JK, Shin YJ, Chauhan GS, Ahn JH, Kim KW (2009) Effect of firing temperature on the electrochemical performance of LiMn0.4Fe0.6PO4/C materials prepared by mechanical activation. J Power Sources 189:59

    Google Scholar 

  15. Shiratsuchi T, Okada S, Doi T, Yamaki J (2009) Cathodic performance of LiMn1−xMxPO4 (M=Ti, Mg and Zr) annealed in an inert atmosphere. Electrochim Acta 54:3145

    Google Scholar 

  16. Chen GY, Wilcox JD, Richardson TJ (2008) Improving the Performance of Lithium Manganese Phosphate Through Divalent Cation Substitution. Electrochem Solid-State Lett 11:A190

  17. Kwon NH, Drezen T, Exnar I, Teerlinck I, Isono M, Graetzel M (2009) Enhanced Electrochemical Performance of Mesoparticulate LiMnPO4 for Lithium Ion Batteries. Electrochem Solid-State Lett 9:277

    Google Scholar 

  18. Murugan AV, Muraliganth T, Manthiram A (2009) One-Pot Microwave-Hydrothermal Synthesis and Characterization of Carbon-Coated LiMPO4 (M = Mn, Fe, and Co) Cathodes. J Electrochem Soc 156:79

    Google Scholar 

  19. Doan TNL, Taniguchi I (2011) Cathode performance of LiMnPO4/C nanocomposites prepared by a combination of spray pyrolysis and wet ball-milling followed by heat treatment. J Power Sources 196:1399

    Google Scholar 

  20. Bilecka I, Djerdj I, Niederberger M (2008) One-minute synthesis of crystalline binary and ternary metal oxide nanoparticles. Chem Commun 886

  21. Gerbec JA, Magana D, Washington A, Strouse GF (2005) Microwave-enhanced reaction rates for nanoparticle synthesis. J Am Chem Soc 127:15791

    Google Scholar 

  22. Tian C, Chan S-W (2000) Ionic conductivities, sintering temperatures and microstructures of bulk ceramic CeO2 doped with Y2O3. Solid State Ionics 134:89

    Google Scholar 

  23. Fleig J, Maier J (1999) Finite-Element Calculations on the Impedance of Electroceramics with Highly Resistive Grain Boundaries: I, Laterally Inhomogeneous Grain Boundaries. J Am Ceram Soc 82(12):3485

    Google Scholar 

  24. Prabu M, Selvasekarapandian S, Reddy MV, Chowdari BVR (2012) Impedance studies on the 5-V cathode material, LiCoPO4. J Solid State Electrochem 16:1833

    Google Scholar 

  25. Verhoef AH, den Hartog HW (1994) High-frequency dielectric properties of alkali and alkali-halide borate glasses. Solid State Ionics 68:305

    Google Scholar 

  26. Rao KJ, Baskaran N, Ramakrishnan PA, Ravi BG, Karthikeyan A (1998) Structural and Lithium Ion Transport Studies in Sol−Gel-Prepared Lithium Silicophosphate Glasses. Chem Mater 10:3109

    Google Scholar 

  27. Prabu M, Selvasekarapandian S, Kulkarni AR, Hirankumar G, Sakunthala A (2010) Ionic conductivity studies on LiSmO2 by impedance spectroscopy. Ionics 16:317

    Google Scholar 

  28. Jonscher AK (1977) The ‘universal’ dielectric response. Nature 267:673

    Google Scholar 

  29. Iqbal MJ, Zahoor A (2008) Electrical and dielectric properties of lithium manganate nanomaterials doped with rare-earth elements. J Power Sources 179:763

    Google Scholar 

  30. Durio C, Daidouh A, Chouaibi N (2002) Electrical Behavior of New Orthophosphates Na2M3(PO4)3 (M3=GaMn2, GaCd2, InMn2 and FeMnCd) with Alluaudite-Like Structure. J Solid State Chem 168:208

    Google Scholar 

  31. Prabu M, Selvasekarapandian S, Kulkarni AR, Karthikeyan S, Hirankumar G, Sanjeeviraja C (2011) Structural, dielectric, and conductivity studies of yttrium-doped LiNiPO4 cathode materials. Ionics 17:201

    Google Scholar 

  32. Williams G, Watts DC (1970) Non-Symmetrical Dielectric Relaxation Behaviour Arising from a Simple Empirical Decay Function. Trans Faraday Soc 66:80

    Google Scholar 

  33. Nagi KL, Martin SW (1986) Correlation between the activation enthalpy and Kohlrausch exponent for ionic conductivity in oxide glasses. Phys Rev B 40:10550

    Google Scholar 

  34. Zhang S, Meng FL, Wu Q, Liu FL, Gao H, Zhang M, Deng C (2013) Synthesis and Characterization of LiMnPO4 Nanoparticles Prepared by a Citric Acid Assisted Sol-Gel Method. Int J Electrochem Sci 8:6603

    Google Scholar 

  35. Saravanan K, Vittal JJ, Reddy MV, Chowdari BVR, Balaya P (2010) Storage performance of LiFe1 − x Mnx PO4 nanoplates (x = 0, 0.5, and 1). J Solid State Electrochem 14:1755

    Google Scholar 

  36. Wang L, Sun W, Xiangming H, Jianjun L, Changyin J (2011) Synthesis of Nano-LiMnPO4 from MnPO4·H2O Prepared by Mechanochemistry. Int J Electrochem Sci 6:2022

    Google Scholar 

Download references

Acknowledgments

NS is grateful to UGC, Government of India, for providing financial support in the form of research project sanction no. 39-460/2010 (SR), Dt: 04.01.2011. BNR is thankful to DST, Government of India, for awarding the INSPIRE fellowship no. DST/INSPIRE Fellowship/2011/[241], DT: 30-11-2011, for pursuing the doctoral degree.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Satyanarayana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rao, B.N., Venkateswarlu, M. & Satyanarayana, N. Structural, electrical and dielectric studies of nanocrystalline LiMnPO4 particles. Ionics 20, 927–934 (2014). https://doi.org/10.1007/s11581-013-1039-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-013-1039-2

Keywords

Navigation