Skip to main content

Aligned carbon nanotube from catalytic chemical vapor deposition technique for energy storage device: a review

Abstract

Carbon nanomaterial especially carbon nanotube (CNT) possesses remarkably significant achievements towards the development of sustainable energy storage applications. This article reviews aligned CNTs grown from chemical vapor deposition (CVD) technique as electrode material in batteries and electrochemical capacitors. As compared to the entangled CNTs, aligned or well-organized CNTs have advantages in specific surface area and ion accessibility in which more electrolyte ions can access to CNT surfaces for better charge storage performance. CVD known as the most popular technique to produce CNTs enables the use of various substrates and CNT can grow in a variety of forms, such as powder, films, aligned or entangled. Also, CVD is a simple and economic technique, and has good controllability of direction and CNT dimension. High purity of as-grown CNTs is also another beauty of the CVD technique. The current trend and performance of devices utilizing CNTs as electrode material is also extensively discussed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. 1.

    Barlev D, Vidu R, Stroeve P (2011) Innovation in concentrated solar power. Sol Energ Mat Sol C 95:2703–2725

    CAS  Article  Google Scholar 

  2. 2.

    Wang Q (2010) Effective policies for renewable energy—the example of China’s wind power-lessons for China’s photovoltaic power. Renew Sust Energ Rev 14:702–712

    Article  Google Scholar 

  3. 3.

    Munuswamy S, Nakamura K, Katta A (2011) Comparing the cost of electricity sourced from a fuel cell-based renewable energy system and the national grid to electrify a rural health centre in India: a case study. Renew Energ 36:2978–2983

    Article  Google Scholar 

  4. 4.

    Banos R, Manzano-Agugliaro, Montoya FG, Gil C, Alcayde A, Gomez J (2011) Optimization methods applied to renewable and sustainable energy: a review. Renew Sust Energ Rev 15:1753–1766

    Article  Google Scholar 

  5. 5.

    Hoyer KG (2008) The history of alternative fuels in transportation: the case of electric and hybrid cars. Util Policy 16:63–71

    Article  Google Scholar 

  6. 6.

    Krivchenko VA (2012) Evolution of carbon film structure during its catalyst-free growth in the plasma of direct current glow discharge. Carbon 50:1477–1487

    CAS  Article  Google Scholar 

  7. 7.

    Ferreira AL, Lingscheidt HA (1997) Impact of separator design on the performance of gelled-electrolyte valve-regulated lead/acid batteries. J Power Sources 67:291–297

    CAS  Article  Google Scholar 

  8. 8.

    Fergus JW (2010) Recent developments in cathode materials for lithium ion batteries. J Power Sources 195:939–954

    CAS  Article  Google Scholar 

  9. 9.

    Rydh CJ, Svard B (2003) Impact on global metal flows arising from the use of portable rechargeable batteries. Sci Total Environ 302:167–184

    CAS  Article  Google Scholar 

  10. 10.

    Mukherjee R, Krishnan R, Luc T-M, Koratkar N (2012) Nanostructured electrodes for high-power lithium ion batteries. Nano Energy 1:518–533

    CAS  Article  Google Scholar 

  11. 11.

    Jiang Q, Qu MZ, Zhou GM, Zhang BL, Yu ZL (2002) A study of activated carbon nanotubes as electrochemical super capacitors electrode materials. Mater Lett 57:988–991

    CAS  Article  Google Scholar 

  12. 12.

    Wang P, Ao Y, Wang C, Hou J, Qian J (2012) Enhanced photoelectrocatalytic activity for dye degradation by grapheme–titania composite film electrodes. J Hazard Mater 223–224:79–83

    Article  CAS  Google Scholar 

  13. 13.

    Reddy RN, Reddy RG (2006) Porous structured vanadium oxide electrode material for electrochemical capacitors. J Power Sources 156:700–704

    CAS  Article  Google Scholar 

  14. 14.

    Zhang Y, Feng H, Wu X, Wang L, Zhang A, Xia T, Dong H, Li X, Zhang L (2009) Progress of electrochemical capacitor electrode materials: a review. Int J Hydrog Energ 34:4889–4899

    CAS  Article  Google Scholar 

  15. 15.

    Ma RZ, Liang J, Wei BQ, Zhang B, Xu CL, Wu DH (1999) Study of electrochemical capacitors utilizing carbon nanotube electrodes. J Power Sources 84:126–129

    CAS  Article  Google Scholar 

  16. 16.

    Yuan D, Ding L, Chu H, Feng Y, McNicholas TP, Liu J (2008) Horizontally aligned single-walled carbon nanotube on quartz from a large variety of metal catalysts. Nano Lett 8:2576–2579

    CAS  Article  Google Scholar 

  17. 17.

    Murakami Y, Chiashi S, Miyauchi Y, Hu M, Ogura M, Okubo T, Maruyama S (2004) Growth of vertically aligned single walled carbon nanotube films on quartz substrates and their optical anisotropy. Chem Phys Lett 385:298–303

    CAS  Article  Google Scholar 

  18. 18.

    Huang S, Cai X, Liu J (2003) Growth of millimeter long and horizontally aligned single walled carbon nanotubes on flat substrates. J Am Chem Soc 125:5636–5637

    CAS  Article  Google Scholar 

  19. 19.

    Seah CM, Chai SP, Mohamed AR (2011) Synthesis of aligned carbon nanotubes. Carbon 49:4613–4635

    CAS  Article  Google Scholar 

  20. 20.

    Mohamed MA, Azam MA, Shikoh E, Fujiwara A (2010) Fabrication and characterization of CNT-FET using ferromagnetic electrodes with different coercivities. Jpn J Appl Phys 49:02BD08

    Article  Google Scholar 

  21. 21.

    Kang SJ, Kocabas C, Ozel T, Shim M, Pimparker N, Alam MA, Rotkin SV, Rogers JA (2007) High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nat Nanotechnol 2:230–236

    CAS  Article  Google Scholar 

  22. 22.

    Gurunathan K, Murugan AV, Marimuthu R, Mulik UP, Amalnerker DP (1999) Electrochemical synthesized conducting polymeric materials for applications towards technology in electronics, optoelectronics and energy storage devices. Mater Chem Phys 61:173–191

    CAS  Article  Google Scholar 

  23. 23.

    Grande L, Chundi VT, Wei D, Bower C, Andrew P, Ryhanen T (2012) Graphene for energy harvesting/storage devices and printed electronics. Particuology 10:1–8

    CAS  Article  Google Scholar 

  24. 24.

    Frackowiak E, Beguin F (2002) Electrochemical storage of energy in carbon nanotubes and nanostructured carbons. Carbon 40:1775–1787

    CAS  Article  Google Scholar 

  25. 25.

    Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nano-sized transition metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407:496–499

    CAS  Article  Google Scholar 

  26. 26.

    Shi R, Jiang L, Pan C (2011) A single-step process for preparing supercapacitor electrodes from carbon nanotubes. Soft Nanosci Lett 1:11–15

    CAS  Article  Google Scholar 

  27. 27.

    Zilli D, Bonelli P, Cukierman AL (2006) Effect of alignment on adsorption characteristics of self-oriented multi-walled carbon nanotube arrays. Nanotechnology 17:5136–5141

    Article  Google Scholar 

  28. 28.

    Hsieh CT, Hsu SM, Lin JY (2012) Fabrication of graphene-based electrochemical capacitors. Jpn J Appl Phys 51:01AH06

    Article  CAS  Google Scholar 

  29. 29.

    An KH, Kim WS, Park YS, Moon JM, Bae DJ, Lim SC, Lee YS, Lee YH (2001) Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes. Adv Funct Mater 11:387–392

    CAS  Article  Google Scholar 

  30. 30.

    Passerini S, Ressler JJ, Le DB, Owens BB, Smyrl WH (1999) High rate electrodes of V2O5 aerogel. Electrochim Acta 44:2209–2217

    CAS  Article  Google Scholar 

  31. 31.

    Calabek M, Micka K (1992) On the resistance of the grid/active materials interphase in lead-acid battery electrodes. Electrochim Acta 37:1805–1809

    CAS  Article  Google Scholar 

  32. 32.

    Gabrielli C, Maurin G, Francy-Chausson H, Thery P, Tran TTM, Tlili M (2006) Electrochemical water softening: principle and application. Desalination 201:150–163

    CAS  Article  Google Scholar 

  33. 33.

    Leroux F, Metenier K, Gautier S, Frackowiak E, Bonnamy S, Beguin F (1999) Electrochemical insertion of lithium in catalytic multi-walled carbon nanotubes. J Power Sources 81–82:317–322

    Article  Google Scholar 

  34. 34.

    Shimoda H, Gao B, Tang XP, Kleinhammes A, Fleming L, Wu Y, Zhou O (2002) Lithium intercalation into etched single-wall carbon nanotubes. Physica B 323:133–134

    CAS  Article  Google Scholar 

  35. 35.

    Eom JY, Kwon HS (2007) Improved lithium insertion/extraction properties of single walled carbon nanotubes by high-energy ball milling. J Mater Res 23:2458–2466

    Article  Google Scholar 

  36. 36.

    Raney JR, Misra A, Daraio C (2011) Tailoring the microstructure and mechanical properties of arrays of aligned multiwall carbon nanotubes by utilizing different hydrogen concentrations during synthesis. Carbon 49:3631–3638

    CAS  Article  Google Scholar 

  37. 37.

    Luo Z, Lim S, You Y, Miao J, Gong H, Zhang J, Wang S, Lin J, Shen Z (2008) Effect of ion bombardment on the synthesis of vertically aligned single-walled carbon nanotubes by plasma-enhanced chemical vapor deposition. Nanotechnology 19:255607

    Article  CAS  Google Scholar 

  38. 38.

    Mahanandia P, Schneider JJ, Engel M, Stuhn B, Subramanyam SV, Nanda KK (2011) Studies towards synthesis, evolution and alignment characteristics of dense, millimeter long multiwalled carbon nanotube arrays. Nanotechnology 2:293–301

    CAS  Google Scholar 

  39. 39.

    Ago H, Uehara N, Ikeda K, Ohdo R, Nakamura K, Tsuji M (2006) Synthesis of horizontally aligned single-walled carbon nanotubes with controllable density on sapphire surface and polarized raman spectroscopy. Chem Phys Lett 421:399–403

    CAS  Article  Google Scholar 

  40. 40.

    Nakayama Y, Pan L, Takeda G (2006) Low-temperature growth of vertically aligned carbon nanotubes using binary catalysts. Jpn J Appl Phys 45:369–371

    CAS  Article  Google Scholar 

  41. 41.

    Jung SM, Jung HY, Suh JS (2007) Horizontally aligned carbon nanotube field emitters having a long term stability. Carbon 45:2917–2921

    CAS  Article  Google Scholar 

  42. 42.

    Jung HY, Jung SM, Suh JS (2008) Horizontally aligned single walled carbon nanotube field emitters fabricated on vertically aligned multi walled carbon nanotube electrode arrays. Carbon 46:1345–1349

    CAS  Article  Google Scholar 

  43. 43.

    Ma Y, Wang B, Wu Y, Huang Y, Chen Y (2011) The production of horizontally aligned single walled carbon nanotubes. Carbon 49:4098–4110

    CAS  Article  Google Scholar 

  44. 44.

    Izadi-Najafabadi A, Yasuda S, Kobashi K, Yamada T, Futaba DN, Hatori H, Yumura M, Iijima S, Hata K (2010) Extracting the full potential of single-walled carbon nanotubes as durable supercapacitor electrodes operable at 4 V with high power and energy density. Adv Mater 22:E235–E241

    CAS  Article  Google Scholar 

  45. 45.

    Lu W, Qu L, Henry K, Dai L (2009) High performance electrochemical capacitors from aligned carbon nanotube electrodes and ionic liquid electrolytes. J Power Sources 189:1270–1277

    CAS  Article  Google Scholar 

  46. 46.

    Zhang H, Cao G, Yang Y, Gu Z (2008) Comparison between electrochemical properties of aligned carbon nanotube array and entangle carbon nanotube electrode. J Electrochem Soc 155:K19–K22

    CAS  Article  Google Scholar 

  47. 47.

    An KH, Jeon KK, Heo JK, Lim SC, Bae DJ, Lee YH (2002) High-capacitance supercapacitor using a nanocomposite electrode of single-walled carbon nanotube and polypyrrole. J Electrochem Soc 149:A1058–A1062

    CAS  Article  Google Scholar 

  48. 48.

    Patoux S, Daniel L, Bourbon C, Lignier H, Pagano C, Cras FL, Jouanneau S, Martinet S (2009) High voltage spinel oxides for Li ion batteries: from the material research to the application. J Power Sources 189:344–352

    CAS  Article  Google Scholar 

  49. 49.

    Sun YK, Myung ST, Park BC, Prakash J, Belharouk I, Amine K (2009) High-energy cathode material for long-life and safe lithium batteries. Nat Mater 8:320–324

    CAS  Article  Google Scholar 

  50. 50.

    Thackeray MM (1997) Manganese oxides for lithium batteries. Prog Solid State Chem 25:1–71

    CAS  Article  Google Scholar 

  51. 51.

    Magasinski A, Dixon P, Hertzberg B, Kvit A, Ayala J, Yushin G (2010) High-performance lithium ion anodes using a hierarchical bottom-up approach. Nat Mater 9:353–358

    CAS  Article  Google Scholar 

  52. 52.

    Delacourt C, Laffont L, Bouchet R, Wurm C, Leriche JB, Morcrette M, Tarascon JM, Masquelier C (2005) Toward understanding of electrical limitations (electronic ionic) in LiMPO4 (M = Fe, Mn) electrode materials. J Electrochem Soc 159:A913–A921

    Article  CAS  Google Scholar 

  53. 53.

    Park M, Chung MD, Less GB, Sastry AM (2010) A review of conduction phenomena in Li ion batteries. J Power Sources 195:7904–7929

    CAS  Article  Google Scholar 

  54. 54.

    Emmenegger CH, Mauron PH, Sudan P, Wenger P, Hermann V, Gallay R, Zuttel A (2003) Investigation of electrochemical double-layer (ECDL) capacitors electrodes based on carbon nanotubes and activated carbon materials. J Power Sources 124:321–329

    CAS  Article  Google Scholar 

  55. 55.

    Niu C, Sichel EK, Hoch R, Moy D, Tennent H (1997) High power electrochemical capacitors based on carbon nanotube electrodes. Appl Phys Lett 70:1480–1482

    CAS  Article  Google Scholar 

  56. 56.

    An KH, Kim WS, Park YS, Choi YC, Lee SM, Chung DC, Bae DJ, Lim SC, Lee YH (2001) Supercapacitors using single-walled carbon nanotube electrodes. Adv Mater 13:497–500

    CAS  Article  Google Scholar 

  57. 57.

    Cheng Q, Tang J, Ma J, Zhang H, Shinya N, Qin LC (2011) Graphene and nanostructured mno2 composite electrodes for supercapacitors. Carbon 49:2917–2925

    CAS  Article  Google Scholar 

  58. 58.

    Chen PC, Shen GZ, Shi Y, Chen HT, Zhou CW (2010) Preparation and characterization of flexible asymmetric supercapacitors based on transition metal oxide nanowire/single-walled carbon nanotube hybrid thin film electrodes. Acs Nano 4:4403–4411

    CAS  Article  Google Scholar 

  59. 59.

    Liu CG, Yu ZN, Neff D, Zhamu A, Jang BZ (2010) Graphene based supercapacitor with an ultrahigh energy density. Nano Lett 10:4863–4868

    CAS  Article  Google Scholar 

  60. 60.

    Cheng Q, Tang J, Ma J, Zhang H, Shinya N, Qin LC (2011) Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density. Phys Chem Chem Phys 13:17615–17624

    CAS  Article  Google Scholar 

  61. 61.

    Hu LB, Choi JW, Yang Y, Jeong S, La Mantia F, Cui LF, Cui Y (2009) Highly conductive paper for energy storage devices. Natl Acad Sci 106:21490–21494

    CAS  Article  Google Scholar 

  62. 62.

    Zhu YW, Murali S, Stoller MD, Ganesh KJ, Cai W, Ferreira PJ, Perkle A, Wallace RM, Cychosz KA, Thommes M, Su D, Stach EA, Ruoff RS (2011) Carbon-based supercapacitors produced by activation of graphene. Science 332:1537–1541

    CAS  Article  Google Scholar 

  63. 63.

    Kim B, Chung H, Kim W (2012) High-performance supercapacitors based on vertically aligned carbon nanotubes and non-aqueous electrolytes. Nanotechnology 23:155401

    Article  CAS  Google Scholar 

  64. 64.

    Lee YJ, Yi H, Kim WJ, Kang K, Yun DS, Strano MS, Ceder G, Belcher AM (2009) Fabricating genetically engineered high-power lithium ion batteries using multiple virus genes. Am Assoc Adv Sci 324:1051–1055

    CAS  Google Scholar 

  65. 65.

    Masarapu C, Wang D, Xin Li LP, Wei BQ (2012) Tailoring electrode/electrolyte interfacial properties in flexible supercapacitors by applying pressure. Adv Energy Mater 2:546–552

    CAS  Article  Google Scholar 

  66. 66.

    Braun PV, Chu J, Pikul JH, King WP, Zhang H (2012) High power rechargeable batteries. Curr Opin Solid State Mater Sci 16:186–198

    CAS  Article  Google Scholar 

  67. 67.

    Zhang Q, D’Astorg S, Xiao P, Zhang X, Lu L (2010) Carbon coated fluorinated graphite for high energy and high power densities primary lithium batteries. J Power Sources 195:2914–2917

    CAS  Article  Google Scholar 

  68. 68.

    Reddy ALM, Shaijumon MM, Gowda SR, Ajayan PM (2009) Coaxial MnO2/carbon nanotube array electrodes for high-performance lithium batteries. Nano Lett 9:1002–1006

    CAS  Article  Google Scholar 

  69. 69.

    Terrones M (2003) Science and technology of the twenty-first century: synthesis, properties, and applications of carbon nanotubes. Annu Rev Mater Res 33:419–501

    CAS  Article  Google Scholar 

  70. 70.

    Mahmoodi A, Ghoranneviss M, Mojtahedzadeh M, Hosseini SHH, Eshghabadi M (2012) Various temperature effects on the growth of carbon nanotubes (CNTs) by thermal chemical vapour deposition (TCVD) method. Int J Phys Sci 7:949–952

    CAS  Article  Google Scholar 

  71. 71.

    Szabo A, Perri C, Csato A, Giordano G, Vuono D, Nagy JB (2010) Synthesis methods of carbon nanotubes and related materials. Materials 3:3092–3140

    CAS  Article  Google Scholar 

  72. 72.

    Prasek J, Drbohlavova J, Chomoucka J, Hubalek J, Jasek O, Adam V, Kizek R (2011) Methods for carbon nanotubes synthesis—review. J Mater Chem 21:15872

    CAS  Article  Google Scholar 

  73. 73.

    Hirlekar R, Yamagar M, Garse H, Vij M, Kadam V (2009) Carbon nanotubes and its applications: a review. Asian J Pharm Clin Res 2:17–27

    CAS  Google Scholar 

  74. 74.

    Firouzi A, Sobri S, Yasin FM, Ahmadun F (2011) Synthesis of carbon nanotubes by chemical vapor deposition and their application for CO2 and CH4 detection. Int Conf Nanotechnol Biosensor 2:169–172

    Google Scholar 

  75. 75.

    Danis T, Kadlecikova M, Vojackova A, Breza J, Michalka M, Buc D, Redhammer R, Vojs M (2006) The influence of Ni catalyst on the growth of carbon nanotubes on Si substrates. Vacuum 81:22–24

    CAS  Article  Google Scholar 

  76. 76.

    Kumar M, Ando Y (2010) Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production. J Nanosci Nanotechno 10:3739–3758

    CAS  Article  Google Scholar 

  77. 77.

    Liu B, Liu Q, Ren W, Li F, Liu C, Cheng HM (2010) Synthesis of single-walled carbon nanotubes, their ropes and books. C R Phys 11:349–354

    CAS  Article  Google Scholar 

  78. 78.

    Saengmee-Anupharb S, Thongpang S, Bertheir ESP, Singjai P (2011) Growth of vertically aligned carbon nanotubes on silicon using a sparked iron-cobalt catalyst. ISRN Nanotechnol 2011:1–8

    Article  CAS  Google Scholar 

  79. 79.

    Rafique MMA, Iqbal J (2011) Production of carbon nanotubes by different routes—a review. J Encapsul Adsorpt Sci 1:29–34

    CAS  Article  Google Scholar 

  80. 80.

    Turano SP, Ready J (2006) Chemical vapor deposition synthesis of self-aligned carbon nanotube arrays. J Electron Mater 35:192–194

    CAS  Article  Google Scholar 

  81. 81.

    Hou PX, Liu C, Cheng HM (2008) Purification of carbon nanotubes. Carbon 46:2003–2025

    CAS  Article  Google Scholar 

  82. 82.

    Adams T, Duong B, Seraphin S (2012) Effects of catalyst components on carbon nanotubes grown by chemical vapor deposition. J Undergraduate Res 1–8

  83. 83.

    Villoria RG, Hart AJ, Wardle BL (2011) ACCVD is a promising one which is well-known for its economical merit, wide selectivity of substrates and highly yielding catalytic reaction to grow CNT. ACS Nano 5:4850–4857

    Article  CAS  Google Scholar 

  84. 84.

    Sivakumar VM, Mohamed AR, Abdullah AZ, Chai SP (2010) Role of reaction and factors of carbon nanotubes growth in chemical vapour decomposition process using methane—a highlight. J Nanomater 2010:1–11

    Google Scholar 

  85. 85.

    Dupuis AC (2005) The catalyst in the CCVD of carbon nanotubes—a review. Prog Mater Sci 50:929–961

    CAS  Article  Google Scholar 

  86. 86.

    Shanov V, Yun YH, Schulz MJ (2006) Synthesis and characterization of carbon nanotube materials (review). J Univ Chem Technol Metall 41:377–390

    CAS  Google Scholar 

  87. 87.

    Tessonnier JP, Su DS (2011) Recent progress on the growth mechanism of carbon nanotubes: a review. ChemSusChem 4:1–25

    Article  CAS  Google Scholar 

  88. 88.

    Huczko A (2002) Synthesis of aligned carbon nanotubes. Appl Phys A 74:617–638

    CAS  Article  Google Scholar 

  89. 89.

    Sugime H, Noda S, Maruyama S, Yamaguchi Y (2009) Multiple ‘optimum’ conditions for Co–Mo catalyzed growth of vertically aligned single-walled carbon nanotube forests. Carbon 47:234–241

    CAS  Article  Google Scholar 

  90. 90.

    Azam MA, Isomura K, Fujiwara A, Shimoda T (2012) Direct growth of vertically aligned single-walled carbon nanotubes on conducting substrate and its electrochemical performance in ionic liquids. Phys Status Solidi A 209:2260–2266

    CAS  Article  Google Scholar 

  91. 91.

    Azam MA, Rashid MWA, Isomura K, Fujiwara A, Shimoda T (2013) X-ray and morphological characterization of Al-O thin Ffilms used for vertically aligned single-walled carbon nanotube growth. Adv Mat Res 620:213–218

    CAS  Article  Google Scholar 

  92. 92.

    Kim B, Chung H, Min BK, Kim H, Kim W (2010) Electrochemical capacitors based on aligned carbon nanotubes directly synthesized on tantalum substrates. Bull Korean Chem Soc 31:3697–3702

    CAS  Article  Google Scholar 

  93. 93.

    Kim B, Chung H, Chu KS, Yoon HG, Lee CJ, Kim W (2010) Synthesis of vertically-aligned carbon nanotubes on stainless steel by water-assisted chemical vapor deposition and characterization of their electrochemical properties. Synth Met 160:584–587

    CAS  Article  Google Scholar 

  94. 94.

    Patole SP, Kim HI, Jung JH, Patole AS, Kim HJ, Han IT, Bhoraskar VN, Yoo JB (2011) The synthesis of vertically-aligned carbon nanotubes on an aluminum foil laminated on stainless steel. Carbon 49:3522–3528

    CAS  Article  Google Scholar 

  95. 95.

    Liu H, Zhang Y, Arato D, Li R, Mérel P, Sun X. Aligned multi-walled carbon nanotubes on different substrates by floating catalyst chemical vapor deposition: Critical effects of buffer layer. Surf Coat Tech 202:4114-4120

  96. 96.

    Liu BC, Lee TJ, Lee SH, Park CY, Lee CJ (2003) Large-scale synthesis of high-purity well-aligned carbon nanotubes using pyrolysis of iron(II) phthalocyanine and acetylene. Chem Phys Lett 377:55–59

    CAS  Article  Google Scholar 

  97. 97.

    Talapatra S, Kar S, Pal SK, Vajtai R, Ci L, Victor P, Shaijumon M, Kaur S, Nalamasu O, Ajayan PM (2006) Direct growth of aligned carbon nanotubes on bulk metals. Nat Nanotechnol 1:112–116

    CAS  Article  Google Scholar 

  98. 98.

    Lee CJ, Park J (2001) Growth and structure of carbon nanotubes produced by thermal chemical vapor deposition. Carbon 39:1891–1896

    CAS  Article  Google Scholar 

  99. 99.

    Liu X, Baronian KHR, Downard AJ (2009) Direct growth of vertically aligned carbon nanotubes on a planar carbon substrate by thermal chemical vapour deposition. Carbon 47:500–506

    CAS  Article  Google Scholar 

  100. 100.

    Gwon YH, Ha JK, Cho KK, Kim HS (2012) Physical and electrochemical properties of synthesized carbon nanotubes [CNTs] on a metal substrate by thermal chemical vapor deposition. Nanoscale Res Lett 7:61

    Article  CAS  Google Scholar 

  101. 101.

    Wang YH, Lin J, Huan CHA, Chen GS (2001) Synthesis of large area aligned carbon nanotube arrays from C2H2-H2 mixture by rf plasma-enhanced chemical vapor deposition. Appl Phys Lett 79:680–682

    CAS  Article  Google Scholar 

  102. 102.

    Loffler R, Haffner M, Visanescu G, Weigand H, Wang X, Zhang D, Fleischer M, Meixner AJ, Fortágh J, Kern DP (2011) Optimization of plasma-enhanced chemical vapor deposition parameters for the growth of individual vertical carbon nanotubes as field emitters. Carbon 49:4197–4203

    Article  CAS  Google Scholar 

  103. 103.

    Inami N, Mohameda MA, Shikoha E, Fujiwara A (2007) Synthesis-condition dependence of carbon nanotube growth by alcohol catalytic chemical vapor deposition method. Sci Tech Adv Mater 8:292–295

    CAS  Article  Google Scholar 

  104. 104.

    Izak T, Vesely M, Danis T, Marton M, Michalka M, Kadlecikova M (2008) Analysis of catalytic growth of carbon nanotubes by ACCVD method. J Phys Conf Ser 100:072008

    Article  CAS  Google Scholar 

  105. 105.

    Azam MA, Fujiwara A, Shimoda T (2011) Thermally oxidized aluminum as catalyst-support layer for vertically aligned single-walled carbon nanotube growth using ethanol. Appl Surf Sci 258:873–882

    CAS  Article  Google Scholar 

  106. 106.

    Patole SP, Alegaonkar PS, Lee JH, Yoo JB (2008) Water-assisted synthesis of carbon nanotubes: acetylene partial pressure and height control. Europhys Lett 81:38002

    Article  CAS  Google Scholar 

  107. 107.

    Patole SP, Alegaonkar PS, Lee HC, Yoo JB (2008) Optimization of water assisted chemical vapor deposition parameters for super growth of carbon nanotubes. Carbon 46:1987–1993

    CAS  Article  Google Scholar 

  108. 108.

    Lee HC, Alegaonkar PS, Kim DY, Lee JH, Patole SP, Yoo JB (2007) Water-assisted synthesis of long, densely packed and patterned carbon nanotubes. Electrom Mater Lett 3:47–52

    CAS  Google Scholar 

  109. 109.

    Melechko AV, Merkulov VI, McKnight TE, Guillorn MA, Klein KL, Lowndes DH, Simpson ML (2005) Vertically aligned carbon nanofibers and related structures: controlled synthesis and directed assembly. J Appl Phys 97:041301

    Article  CAS  Google Scholar 

  110. 110.

    Chhowalla M, Teo KBK, Ducati C, Rupesinghe NL, Amaratunga GAJ, Ferrari AC, Roy D, Robertson J, Milne WI (2001) Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition. J Appl Phys 90:5308

    CAS  Article  Google Scholar 

  111. 111.

    Lim SH, Luo Z, Shen Z, Lin J (2010) Plasma-assisted synthesis of carbon nanotubes. Nanoscale Res Lett 5:1377–1386

    CAS  Article  Google Scholar 

  112. 112.

    Azam MA, Isomura K, Fujiwara A, Shimoda T (2011) Towards realization of high performance electrochemical device using vertical-aligned single-walled carbon nanotubes grown from ethanol. Global Eng Technol Rev 1:1–8

    Google Scholar 

  113. 113.

    Gao L, Peng A, Wang ZY, Zhang H, Shi Z, Gu Z, Cao G, Ding B (2008) Growth of aligned carbon nanotube arrays on metallic substrate and its application to supercapacitors. Solid State Commun 146:380–383

    CAS  Article  Google Scholar 

  114. 114.

    Zhang H, Cao G, Wang Z, Yang Y, Gu Z (2008) Electrochemical capacitive properties of carbon nanotube arrays directly grown on glassy carbon and tantalum foil. Carbon 46:822–824

    CAS  Article  Google Scholar 

  115. 115.

    Shah R, Zhang X, Talapatra S (2009) Electrochemical double layer capacitor electrodes using aligned carbon nanotubes grown directly on metals. Nanotechnology 20:395202

    Article  CAS  Google Scholar 

  116. 116.

    Azam MA, Mohamed MA, Shikoh E, Fujiwara A (2010) Thermal degradation of single-walled carbon nanotubes during alcohol catalytic chemical vapor deposition process. Jpn J Appl Phys 49:02BA04

    Article  CAS  Google Scholar 

  117. 117.

    Maruyama S, Kojima R, Miyauchi Y, Chiashi S, Kohno M (2002) Chem Phys Lett 360:229–234

    CAS  Article  Google Scholar 

  118. 118.

    Snow ES, Perkins FK, Houser EJ, Badscu SC, Reinecke TL (2005) Chemical detection with a single-walled carbon nanotube capacitor. Science 307:1942–1945

    CAS  Article  Google Scholar 

  119. 119.

    Frackowiak E, Metenier K, Bertagna V, Beuin F (2000) Supercapacitor electrodes from multiwalled carbon nanotubes. Appl Phys Lett 77:2421–2423

    CAS  Article  Google Scholar 

  120. 120.

    Varzi A, Taubert C, Wohlfahrt-Mehrens M, Kreis M, Schutz W (2011) Study of multi-walled carbon nanotubes for lithium-ion battery electrodes. J Power Sources 196:3303–3309

    CAS  Article  Google Scholar 

  121. 121.

    Ng SH, Wang J, Guo ZP, Chen J, Wang GX, Liu HK (2005) Single wall carbon nanotube paper as anode for lithium-ion battery. Electrochim Acta 51:23–28

    CAS  Article  Google Scholar 

  122. 122.

    Hiraoka T, Izadi-Najafabadi A, Yamada T, Futaba DN, Yasuda S (2010) Compact and light supercapacitor electrodes from a surface-only solid by opened carbon nanotubes with 2200 m2 g−1 surface area. Adv Funct Mater 20:422–428

    CAS  Article  Google Scholar 

  123. 123.

    Du CS, Pan N (2006) High power density supercapacitor electrodes of carbon nanotube films by electrophoretic deposition. Nanotechnology 17:5314–5318

    CAS  Article  Google Scholar 

  124. 124.

    Yoon BJ, Jeong SH, Lee KH, Kim HS, Park CG, Han JH (2004) Electrical properties of electrical double layer capacitors with integrated carbon nanotube electrodes. Chem Phys Lett 388:170–174

    CAS  Article  Google Scholar 

  125. 125.

    Hu LB, Wu H, Cui Y (2010) Printed energy storage devices by integration of electrodes and separators into single sheets of paper. Appl Phys Lett 96:183502

    Article  CAS  Google Scholar 

  126. 126.

    Pan H, Li J, Feng YP (2010) Carbon nanotubes for supercapacitor. Nanoscale Res Lett 5:654–668

    CAS  Article  Google Scholar 

  127. 127.

    Liu H, He P, Li Z, Liu Y, Li J (2006) A novel nickel-based mixed rare-earth oxide/activated carbon supercapacitor using room temperature ionic liquid electrolyte. Electrochim Acta 51:1925–1931

    CAS  Article  Google Scholar 

  128. 128.

    Gupta V, Miura N (2006) High performance electrochemical supercapacitor from electrochemically synthesized nanostructured polyaniline. Mater Lett 60:1466–1469

    CAS  Article  Google Scholar 

  129. 129.

    Fan LZ, Maier J (2006) High-performance polypyrrole electrode materials for redox supercapacitors. Electrochem Commun 8:937–940

    CAS  Article  Google Scholar 

  130. 130.

    Yan J, Fan Z, Wei T, Cheng J, Shao B, Wang K, Song L, Zhang M (2009) Carbon nanotube/MnO2 composites synthesized by microwave-assisted method for supercapacitors with high power and energy densities. J Power Sources 194:1202–1207

    CAS  Article  Google Scholar 

  131. 131.

    Lee JK, Pathan HM, Jung KD, Joo OS (2006) Electrochemical capacitance of nanocomposite films formed by loading carbon nanotubes with ruthenium oxide. J Power Sources 159:1527–1531

    CAS  Article  Google Scholar 

  132. 132.

    Wang GX, Zhang BL, Yu ZL, Qu MZ (2005) Manganese oxide/MWNTs composite electrodes for supercapacitors. Solic State Ionics 176:1169–1174

    CAS  Article  Google Scholar 

  133. 133.

    Lee JY, Liang K, An KH, Lee YH (2005) Nickel oxide/carbon nanotubes nanocomposite for electrochemical capacitance. Synth Met 150:153–157

    CAS  Article  Google Scholar 

  134. 134.

    Wang XF, Wang DZ, Liang J (2003) Electrochemical capacitor using nickel oxide/carbon nanotube composites electrode. J Inorg Mater 18:331–336

    CAS  Google Scholar 

  135. 135.

    Fan Z, Yan J, Zhi L, Zhang Q, Wei T, Feng J, Zhang M, Qian W, Wei F (2010) A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors. Adv Mater 22:3723–3728

    CAS  Article  Google Scholar 

  136. 136.

    Kim JH, Lee KH, Overzet LJ, Lee GS (2011) Synthesis and electrochemical properties of spin-capable carbon nanotube sheet/MnOx composites for high-performance energy storage devices. Nano Lett 11:2611–2617

    CAS  Article  Google Scholar 

  137. 137.

    Nam KW, Kim KH, Lee ES, Yoon WS, Yang XQ, Kim KB (2008) Pseudocapacitive properties of electrochemically prepared nickel oxides on 3-dimensional carbon nanotube film substrates. J Power Sources 182:642–653

    CAS  Article  Google Scholar 

  138. 138.

    Lota K, Khomenko V, Frackowiak E (2004) Capacitance properties of poly(3,4-ethylenedioxythiophene)/carbon nanotubes composites. J Phys Chem Solids 65:295–301

    CAS  Article  Google Scholar 

  139. 139.

    Li WZ, Xie SS, Qian LX, Chang BH, Zou BS, Zhou WY, Zhao RA, Wang G (1996) Large-scale synthesis of aligned carbon nanotubes. Science 274:1701–1703

    CAS  Article  Google Scholar 

  140. 140.

    Zhang H, Cao G, Yang Y (2007) Using a cut–paste method to prepare a carbon nanotube fur electrode. Nanotechnology 18:195607

    Article  CAS  Google Scholar 

  141. 141.

    Du CS, Yeh J, Pang N (2005) High power density supercapacitors using locally aligned carbon nanotube electrodes. Nanotechnology 16:350–353

    CAS  Article  Google Scholar 

  142. 142.

    Zhang H, Cao G, Yang Y (2007) Electrochemical properties of ultra-long, aligned, carbon nanotube array electrode in organic electrolyte. J Power Sources 172:476–480

    CAS  Article  Google Scholar 

  143. 143.

    Azam MA, Fujiwara A, Shimoda T (2011) Direct growth of vertically-aligned single-walled carbon nanotubes on conducting substrates using ethanol for electrochemical capacitor. J New Mat Electrochem Syst 14:173–178

    CAS  Google Scholar 

  144. 144.

    Azam MA, Fujiwara A, Shimoda T (2013) Significant capacitance performance of vertically aligned single-walled carbon nanotube supercapacitor by varying potassium hydroxide concentration. Int J Electrochem Sci 8:3902–3911

    Google Scholar 

  145. 145.

    Wang D, Song P, Liu C, Wu W, Fan S (2008) Highly oriented carbon nanotube papers made of aligned carbon nanotubes. Nanotechnology 19:075609

    Article  CAS  Google Scholar 

  146. 146.

    Pushparaj VL, Shaijumon MM, Kumar A, Murugesan S, Ci L, Vajtai R, Linhardt RJ, Nalamasu O, Ajayan PM (2007) Flexible energy storage devices based on nanocomposite paper. Proc Natl Acad Sci U S A 104:13574–13577

    CAS  Article  Google Scholar 

  147. 147.

    Futaba DN, Hata K, Yamada T, Hiraoka T, Hayamizu Y, Kakudate Y, Tanaike O, Hatori H, Yumura M, Iijima S (2006) Shape engineerable and highly densely packed single walled carbon nanotubes and their application as supercapacitor electrodes. Nat Mater 5:987–994

    CAS  Article  Google Scholar 

  148. 148.

    Lv P, Feng YY, Li Y, Feng W (2012) Carbon fabric-aligned carbon nanotube/MnO2/conducting polymers ternary composite electrodes with high utilization and mass loading of MnO2 for super-capacitors. J Power Sources 220:160–168

    CAS  Article  Google Scholar 

  149. 149.

    Liu CC, Tsai DS, Chung WH, Li KW, Lee KY, Huang YS (2011) Electrochemical micro-capacitors of patterned electrodes loaded with manganese oxide and carbon nanotubes. J Power Sources 196:5761–5768

    CAS  Article  Google Scholar 

  150. 150.

    Hughes M, Shaffer MSP, Renouf AC, Singh C, Chen Z, Fray DJ, Windle AH (2002) Electrochemical capacticance of nanocomposite films formed by coating aligned arrays of carbon nanotubes with polypyrrole. Adv Mater 14:382–385

    CAS  Article  Google Scholar 

  151. 151.

    Shu J, Li H, Yang R, Shi Y, Huang X (2006) Cage-like carbon nanotubes/Si composite as anode material for lithium ion batteries. Electrochem Commun 8:51–54

    CAS  Article  Google Scholar 

  152. 152.

    Muraliganth T, Murugan AV, Manthiram A (2008) Nanoscale networking of LiFePO4 nanorods synthesized by a microwave-solvothermal route with carbon nanotubes for lithium ion batteries. J Mater Chem 18:5661–5668

    CAS  Article  Google Scholar 

  153. 153.

    Jin B, Jin EM, Park KH, Gu HB (2008) Electrochemical properties of LiFePO4-multiwalled carbon nanotubes composite cathode materials for lithium polymer battery. Electrochem Commun 10:1537–1540

    CAS  Article  Google Scholar 

  154. 154.

    Wen Z, Wang Q, Zhang Q, Li J (2007) In situ growth of mesoporous SnO2 on multiwalled carbon nanotubes: a novel composite with porous-tube structure as anode for lithium batteries. Adv Funct Mater 17:2772–2778

    CAS  Article  Google Scholar 

  155. 155.

    Casas C, Li W (2012) A review of application of carbon nanotubes for lithium ion battery anode material. J Power Sources 208:74–85

    Article  CAS  Google Scholar 

  156. 156.

    Landi BJ, Ganter MJ, Cress CD, Dileo RA, Reffaelle RP (2009) Carbon nanotubes for lithium ion batteries. Energy Environ Sci 2:638–654

    CAS  Article  Google Scholar 

  157. 157.

    Masarapu C, Subramanian V, Zhu H, Wei B (2009) Long-cycle electrochemical behavior of multiwall carbon nanotubes synthesized on stainless steel in Li ion batteries. Adv Funct Mater 19:1008–1014

    CAS  Article  Google Scholar 

  158. 158.

    Welna DT, Qu L, Taylor B, Dai L, Durstock M (2011) Vertically aligned carbon nanotube electrodes for lithium ion batteries. J Power Sources 196:1455–1460

    CAS  Article  Google Scholar 

  159. 159.

    Wang W, Epur R, Kumta PN (2011) Vertically aligned silicon/carbon nanotube (VA-SCNT) arrays: hierarchical anodes for lithium-ion battery. Electrochem Commun 13:429–432

    CAS  Article  Google Scholar 

  160. 160.

    Lu W, Goering A, Qu L, Dai L (2012) Lithium ion batteries based on vertically aligned carbon nanotube electrodes and ionic liquid electrolytes. Phys Chem Chem Phys 14:12099–12104

    CAS  Article  Google Scholar 

  161. 161.

    Dorfler S, Hagen M, Althues H, Tubke J, Kaskel S, Hoffmann MJ (2012) High capacity vertical aligned carbon nanotube/sulfur composite cathodes for lithium sulfur batteries. Chem Commun 48:4097–4099

    Article  CAS  Google Scholar 

  162. 162.

    Yue H, Huang X, Yang Y (2008) Preparation and electrochemical performance of manganese oxide/carbon nanotubes composite as a cathode for rechargeable lithium battery with high power density. Mater Lett 62:3388–3390

    CAS  Article  Google Scholar 

  163. 163.

    Chen J, Liu Y, Minett A, Lynam C (2007) Flexible, aligned carbon nanotube/conducting polymer electrodes for a lithium-ion battery. Chem Mater 43:3595–3597

    Article  CAS  Google Scholar 

  164. 164.

    Li S, Luo Y, Lv W, Yu W, Wu S, Hou P, Yang Q, Meng Q, Liu C, Cheng HM (2011) Vertically aligned carbon nanotubes grown on graphene paper as electrodes ii lithium-ion batteries and dye-sensitized solar cells. Adv Energy Mater 1:486–490

    CAS  Article  Google Scholar 

Download references

Acknowledgment

This work was financially supported by the Ministry of Higher Education (MOHE), Malaysia, and eScienceFund research grant from Ministry of Science, Technology, and Innovation (MOSTI), Malaysia No.:03-01-14-SF0063.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mohd Asyadi Azam.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Azam, M.A., Manaf, N.S.A., Talib, E. et al. Aligned carbon nanotube from catalytic chemical vapor deposition technique for energy storage device: a review. Ionics 19, 1455–1476 (2013). https://doi.org/10.1007/s11581-013-0979-x

Download citation

Keywords

  • Aligned carbon nanotubes
  • Catalytic chemical vapor deposition
  • Electrochemical capacitor
  • Battery
  • Electrochemical performance