Skip to main content
Log in

Electrical conductivity and dielectric relaxation behavior of AgFeP2O7 compound

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In the present study, AgFeP2O7 was prepared by a solid-state reaction method. Rietveld refinement of the X-ray diffraction pattern suggests the formation of the single phase desired compound with monoclinic structure at room temperature. Not only were the impedance spectroscopy measurements of our compound carried out from 209 Hz to 5 MHz over the temperature range of 553 K–698 K but its AC conductivity as well as the dielectric relaxation were evaluated. Impedance measurements show AgFeP2O7 an ionic conductor being the conductivity 1.04 × 10– 5– 1cm– 1) at 573 K. The conductivity and modulus formalisms provide nearly the same activation energies for electrical relaxation of mobile ions revealing that transport properties in this material appear to be due to an ionic hopping mechanism dominated by the motion of the Ag+ ions along tunnels presented in the structure of the investigated material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Rhaiem AB, Chouaib S, Guidara K (2010) Dielectric relaxation and ionic conductivity studies of Ag2ZnP2O7. Ionics 16:455–463

    Article  Google Scholar 

  2. Maspoch D, Ruiz-Molina D, Veciana J (2007) Old materials with new tricks: multifunctional open-framework materials. Chem Soc Rev 36:770

    Article  CAS  Google Scholar 

  3. Genkina EA, Maksirnov BA, Timofeeva VA, Bykov AB, MerNiko OK (1985) LiFeP2O7: Structure and magnetic properties. Dokl Akad Nauk SSSR 284:864

    CAS  Google Scholar 

  4. Gabelica-Robert M, Goreaud M, Labbe P, Raveau B (1982) The pyrophosphate NaFeP2O7: A cage structure. J Solid State Chem 45:389

    Article  CAS  Google Scholar 

  5. Riou D, Labbe P, Goreaud M (1988) LiFeP2O7: Structure and magnetic properties. Eur J Sol St Inorg Chem 215

  6. Gamondes JP, d’Yvoire F, Boulle A (1971) Etudes cristallographique magnétique et par résonance Mössbauer de la variété de haute température du pyrophosphate NaFeP2O7. C R Acad Sci Paris 49:272

    Google Scholar 

  7. Grunze I, Grunze H, Anorg Z (1984) Thermal Decomposition of Various Tin (IV) cyclo-Phosphates. Allg Chem 512:39

    Article  CAS  Google Scholar 

  8. Riou D, Nguyen N, Benloucif R, Raveau B (1990) LiFeP2O7: Structure and magnetic properties. Mater Res Bull 25:1363

    Article  CAS  Google Scholar 

  9. Huang MR et al (2013) Lead-ion potentiometric sensor based on electrically conducting microparticles of sulfonic phenylenediamine copolymer. Analyst 138:3820–3829

    Article  CAS  Google Scholar 

  10. Li XG et al (2013) Lead-ion potentiometric sensor based on electrically conducting microparticles of sulfonic phenylenediamine copolymer. Chem Sci 4:1970–1978

    Article  CAS  Google Scholar 

  11. Li XG, Liu R, Huang MR (2005) Facile synthesis and highly reactive silver ion adsorption of novel microparticles of sulfodiphenylamine and diaminonaphthalene copolymers. Chem Mater 17:5411–5419

    Article  CAS  Google Scholar 

  12. Moya-Pizarro T, Salmon R, Fournes L, Le Flem G, Wanklyn BPH (1984) Etudes cristallographique magnétique et par résonance Mössbauer de la variété de haute température du pyrophosphate NaFeP2O7. J Solid State Chem 53:387

    Article  CAS  Google Scholar 

  13. Terebilenko KV et al (2010) Structure and magnetic properties of AgFeP2O7. J Solid State Chem 183:1473–1476

    Article  CAS  Google Scholar 

  14. Mott NF (1968) Conduction in glasses containing transition metal ions. J Non Cryst Solids 106:1–17

    Article  Google Scholar 

  15. Austin IG, Mott NF (1969) Polarons in crystalline and non-crystalline materials. Adv Phys 18:41–102

    Article  CAS  Google Scholar 

  16. Ben Rhaiem A, Guidara K, Gargouri M, Daoud A (2005) Electrical properties and equivalent circuit of trimethylammonium monobromodichloromercurate. J Alloys Compd 392:87

    Article  Google Scholar 

  17. Nadeem M, Akhtar MJ, Khan AY (2005) Effects of low frequency near metal-insulator transition temperatures on polycrystalline La0. 65 Ca0. 35 Mn1-y FeyO3. Solid State Commun 134:431

    Article  CAS  Google Scholar 

  18. Jonscher AK (1975) The Interpretation of Non-Ideal Dielectric Admittance and Impedance Diagrams. Phys Status Solidi (a) 32:665

    Article  CAS  Google Scholar 

  19. Dyre JC, Schrøder TB (2000) Universality of ac conduction in disordered solids. Rev Mod Phys 72:873

    Article  Google Scholar 

  20. Nowick AS, Lim BS (2001) Simple versus complex ionic systems Electrical relaxations. Phys Rev B 63:184115

    Article  Google Scholar 

  21. León C, Rivera A, Varez A, Sanz J, Santamaria J, Ngai KL (2001) Origin of Constant Loss in Ionic Conductors. Phys Rev Lett 86:1279

    Article  Google Scholar 

  22. Ahmed MM (2005) Estimation of charge-carrier concentration and ac conductivity scaling properties near the V-I phase transition of polycrystalline Na2SO4. J Phys Rev B 72:174303

    Article  Google Scholar 

  23. Ghosh A, Pan A (2000) Correlation of relaxation dynamics and conductivity spectra with cation constriction in ion-conducting glasses. Phys Rev Lett 84:2188

    Article  CAS  Google Scholar 

  24. Schrøder TB, Dyre JC (2000) Scaling and Universality of ac Conduction in Disordered Solids. Phys Rev Lett 84:310

    Article  Google Scholar 

  25. Elliot SR (1994) Frequency-dependent conductivity in ionically and electronically Conducting amorphous solids. Solid State Ionics 27:70–71

    Google Scholar 

  26. Kahnt H, Bunsenges B (1991) Ionic Transport in Oxide Glasses and Frequency Dependence of Conductivity. Phys Chem 95:1021

    CAS  Google Scholar 

  27. Roling B, Happe A, Funke K, Ingram MD (1997) Carrier Concentrations and Relaxation Spectroscopy: New Information from Scaling Properties of Conductivity Spectra in Ionically Conducting Glasses. Phys Rev Lett 78:2160

    Article  CAS  Google Scholar 

  28. Louati B, Hlel F, Guidara K (2009) Dielectric and ac ionic conductivity investigations in the monetite. Alloys Compd 486:299

    Article  CAS  Google Scholar 

  29. Pan A, Ghosh A (2002) Correlation of relaxation dynamics and conductivity spectra with cation constriction in ion-conducting glasses. Phys Rev B 66:12301

    Article  Google Scholar 

  30. Moynihan CT, Boesch LB, Laberge NL (1973) The Debye-Falkenhagen theory of electrical relaxation in glass. Phys Chem Glasses 14:122

    CAS  Google Scholar 

  31. Macedo PB, Moynihan CT, Bose R (1972) The role of ionic diffusion in polarization in vitreous ionic conductors. Phys Chem Glasses 13:171

    CAS  Google Scholar 

  32. Alvarez F, Alegría A, Colmenero J (1993) Interconnection between frequency-domain. Havriliak-Negami and time-domain Kohlrausch-Williams-Watts relaxation functions. Phys Rev B47:125

    Article  Google Scholar 

  33. Kolodziej H, Sobczyk L (1971) Investigation of the dielectric properties of potassium hydrogen maleate. Acta Phys Polon A39:59

    Google Scholar 

  34. Qian X, Gu N, Cheng Z, Yang X, Dong S (2001) Impedance study of (PEO) 10LiClO4–Al2O3 composite polymer electrolyte with blocking electrodes. Electrochim Acta 46:1829

    Article  CAS  Google Scholar 

  35. Ghosh S, Ghosh A (2002) Electrical conductivity and conductivity relaxation in mixed alkali fluoride glasses. Solid State Ionics 149:67

    Article  CAS  Google Scholar 

  36. Migahed MD, Bakr NA, Abdel-Hamid MI, EL-Hannafy O, El-Nimr M (1996) Dielectric relaxation and electric modulus behavior in poly(vinyl alcohol)-based composite systems. J Appl Polym Sci 59:655–662

    Article  CAS  Google Scholar 

  37. Padmasree KP, Kanchan DK, Kulkarni AR (2006) Impedance and Modulus studies of the solid electrolyte system 20CdI2–80[xAg2O–y(0.7V2O5–0.3B2O3)], where 1 ≤ x/y ≤ 3. Solid State Ionics 177:475

    Article  CAS  Google Scholar 

  38. Williams G, Watts DC (1970) Trans Faraday Soc 66:80

    Article  CAS  Google Scholar 

  39. Ngai KL, Wrigh GB (1998) Reduction of the glass temperature of thin freely standing polymer films caused by the decrease of the coupling parameter in the coupling model. J Non Cryst Solids 235

  40. Alvarez F, Alegría A, Colmenero J (1991) Dynamics of the α relaxation of a glass-forming polymeric system: Dielectric, mechanical, nuclear-magnetic-resonance, and neutron-scattering studies. Phys Rev B 44:7306

    Article  Google Scholar 

  41. Alvarez F, Alegría A, Colmenero J (1993) Interconnection between frequency-domain Havriliak-Negami and time-domain Kohlrausch-Williams-Watts relaxation functions. Phys Rev B 47:125

    Article  CAS  Google Scholar 

  42. Chowdari BVR, Gopalakrishnan R (1987) Ionic transport studies of the glassy silver vanadomolybdate system. Solid State Ionics 23:225

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Nasri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nasri, S., Megdiche, M., Gargouri, M. et al. Electrical conductivity and dielectric relaxation behavior of AgFeP2O7 compound. Ionics 20, 399–407 (2014). https://doi.org/10.1007/s11581-013-0969-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-013-0969-z

Keywords

Navigation