Skip to main content
Log in

A facile hydrothermal method to prepare LiFePO4/C submicron rod with core–shell structure

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Submicron rod LiFePO4/C has been synthesized via a facile hydrothermal process. The morphology, crystal structure, and charge–discharge performance of the prepared samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and galvanostatic charge–discharge testing. The SEM and TEM illustrate that submicron rods with a width of about 140 nm and a length of up to 400 nm have been obtained. The TEM test also indicates a “core–shell” structure with a 1.5–2 nm carbon shell on the LiFePO4 core. Even though the separate carbon-coated procedure is not used in this method, the electrochemical behavior results are satisfied. It displays that LiFePO4/C has highly crystalline and a desirable core–shell structure with uniform carbon film. Galvanostatic battery testing shows that LiFePO4/C delivers 104 mAh g−1 at 5 C rates. The highest specific capacity of 166 mAh g−1 is achieved at 0.1 C rate, and 99.8 % of the initial specific capacitance remained after 30 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Armand M, Tarascon JM (2008) Nature 451:652–657

    Article  CAS  Google Scholar 

  2. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) J Electrochem Soc 144:1188–1194

    Article  CAS  Google Scholar 

  3. Goodenough JB (2007) J Power Sources 174:996–1000

    Article  CAS  Google Scholar 

  4. Manthiram A, Murugan AV, Sarkar A, Muraliganth T (2008) Energy Environ Sci 1:621–638

    Article  CAS  Google Scholar 

  5. Bülow JF, Zhang HL, Morse DE (2012) Adv Energy Mater 2:309–315

    Article  Google Scholar 

  6. Kanamura K, Koizumi S, Dokko K (2008) J Mater Sci 43:2138–2142

    Article  CAS  Google Scholar 

  7. Ellis BL, Lee KT, Nazar LF (2010) Chem Mater 22:691–714

    Article  CAS  Google Scholar 

  8. Islam MS, Driscoll DJ, Fisher CAJ, Slater PR (2005) Chem Mater 17:5085–5092

    Article  CAS  Google Scholar 

  9. Fang HS, Pan ZY, Li LP, Yang Y, Yan GF, Li GS, Wei SQ (2008) Electrochem Commun 10:1071–1073

    Article  CAS  Google Scholar 

  10. Croce F, Epifanio AD (2002) Electrochem Solid-State Lett 5:A47–A50

    Article  CAS  Google Scholar 

  11. Sun CW, Rajasekhara S, Goodenough JB, Zhou F (2011) J Am Chem Soc 133:2132–2135

    Article  CAS  Google Scholar 

  12. Zhang WJ (2011) J Power Sources 196:2962–2970

    Article  CAS  Google Scholar 

  13. Yi TF, Li XY, Liu HP, Shu J, Zhu YR, Zhu RS (2012) Ionics 18:529–539

    Article  CAS  Google Scholar 

  14. Cho YD, Fey GTK, Kao HM (2009) J Power Sources 189:256–262

    Article  CAS  Google Scholar 

  15. Dominko R, Bele M, Gaberscek M, Remskar M, Hanzel D, Pejovnik S, Jamnik J (2005) J Electrochem Soc 152:A607–A610

    Article  CAS  Google Scholar 

  16. Zhao B, Jiang Y, Zhang HJ, Tao HH, Zhong MY, Jiao Z (2009) J Power Sources 189:462–466

    Article  CAS  Google Scholar 

  17. Kong LB, Zhang P, Liu MC, Liu H, Lou YC, Kang L (2012) Electrochim Acta 70:19–24

    Article  CAS  Google Scholar 

  18. Wang YG, Wang YR, Hosono EJ, Wang KX, Zhou HS (2008) Angew Chem Int Ed 47:7461–7465

    Article  CAS  Google Scholar 

  19. Lepage D, Michot C, Liang GX, Gauthier M, Schougaard SB (2011) Angew Chem Int Ed 50:6884–6887

    Article  CAS  Google Scholar 

  20. Dinh HC, Mho SI, Yeo IH (2011) Electroanalysis 23:2079–2086

    Article  CAS  Google Scholar 

  21. Wang YG, Li HQ, Xia YY (2006) Adv Mater 18:2619–2623

    Article  CAS  Google Scholar 

  22. Tan S, Tieu JH, Qlanger DB (2005) J Phys Chem B 109:14085–14092

    Article  CAS  Google Scholar 

  23. Zaghiba K, Julien CM (2005) J Power Sources 142:279–284

    Article  Google Scholar 

  24. Doherty CM, Caruso RA, Smarsly BM, Adelhelm P, Drummond CJ (2009) Chem Mater 21:5300–5306

    Article  CAS  Google Scholar 

  25. Ferrari S, Lavall RL, Capsoni D, Quartarone E, Magistris A, Mustarelli P, Canton P (2010) J Phys Chem C 114:12598–12603

    Article  CAS  Google Scholar 

  26. Liu H, Li C, Zhang HP, Fu LJ, Wu YP, Wu HQ (2006) J Power Sources 159:717–720

    Article  CAS  Google Scholar 

  27. Chang C, Her L, Su H, Hsu S, Yen YT (2011) J Electrochem Soc 158:A481–A486

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (no. 21163010), the Key Project of Chinese Ministry of Education (no. 212183), and the Natural Science Funds for Distinguished Young Scholars of Gansu Province (no. 1111RJDA012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling-Bin Kong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, H., Kong, LB., Zhang, P. et al. A facile hydrothermal method to prepare LiFePO4/C submicron rod with core–shell structure. Ionics 20, 15–21 (2014). https://doi.org/10.1007/s11581-013-0958-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-013-0958-2

Keywords

Navigation