Ionics

, Volume 19, Issue 12, pp 1915–1920 | Cite as

Effect of In3+ ions on the electrochemical performance of the positive electrolyte for vanadium redox flow batteries

  • Zhangxing He
  • Lei Chen
  • Yaoyi He
  • Chen Chen
  • Yifan Jiang
  • Zhen He
  • Suqin Liu
Original Paper

Abstract

Influence of In3+ ions on electrochemical performance of positive electrolyte for vanadium redox flow battery was investigated in this paper. The electrochemical activity and kinetics of V(IV)/V(V) redox couple can be enhanced by the addition of In3+ ions, and the optimal concentration of In3+ ions was found at 10 mM. At this condition, the oxidation peak current with 10 mM In3+ ions is 46.6 mA at a scan rate of 20 mV s−1, larger than that of pristine electrolyte (41.8 mA), and the standard rate constant is 6.53 × 10−5 cm s−1, 42 % larger than that of the pristine electrolyte (4.58 × 10−5 cm s−1). The cell using electrolyte with 10 mM In3+ ions was assembled, and the charge–discharge performance was evaluated, and the average energy efficiency increases by 1.9 % compared with the pristine cell. The improved electrochemical performance may be ascribed to that In3+ ions change the hydration state of vanadium ions in electrolyte and promote charge transfer process.

Keywords

Additive In3+ ions Electrochemical activity Kinetics Vanadium redox flow batteries 

References

  1. 1.
    Suzuki Y, Koyanagi A, Kobayashi M, Shimada R (2005) Energy 30:2128CrossRefGoogle Scholar
  2. 2.
    Hartikainen T, Mikkonen R, Lehtonen J (2007) Appl Energy 84:29CrossRefGoogle Scholar
  3. 3.
    McManus MC (2012) Appl Energy 93:288CrossRefGoogle Scholar
  4. 4.
    Raju M, Kumar Khaitan S (2012) Appl Energy 89:474CrossRefGoogle Scholar
  5. 5.
    Leung P, Li X, Ponce de Leon C, Berlouis L, Low CTJ, Walsh FC (2012) RSC Adv 2:10125CrossRefGoogle Scholar
  6. 6.
    Skyllas-Kazacos M, Rychcik M, Robins RG, Fane AG, Green MA (1986) J Electrochem Soc 133:1057CrossRefGoogle Scholar
  7. 7.
    Kazacos M, Cheng M, Skyllas-Kazacos M (1990) J Appl Electrochem 20:463CrossRefGoogle Scholar
  8. 8.
    Rahman F, Skyllas-Kazacos M (2009) J Power Sources 189:1212CrossRefGoogle Scholar
  9. 9.
    Sun B, Skyllas-Kazacos M (1992) Electrochim Acta 37:1253CrossRefGoogle Scholar
  10. 10.
    Kim S, Yan J, Schwenzer B, Zhang J, Li L, Liu J, Yang Z, Hickner MA (2010) Electrochem. Commun 12:1650Google Scholar
  11. 11.
    Teng X, Lei J, Gu X, Dai J, Zhu Y, Li F (2012) Ionics 18:513CrossRefGoogle Scholar
  12. 12.
    Kim S, Vijayakumar M, Wang W, Zhang J, Chen B, Nie Z, Chen F, Hu J, Li L, Yang Z (2011) Phys Chem Chem Phys 13:18186CrossRefGoogle Scholar
  13. 13.
    Ponce de León C, Frías-Ferrer A, González-García J, Szánto DA, Walsh FC (2006) J Power Sources 160:716CrossRefGoogle Scholar
  14. 14.
    Wu T, Huang K, Liu S, Zhuang S, Fang D, Li S, Lu D, Su A (2012) J Solid State Electrochem 16:579CrossRefGoogle Scholar
  15. 15.
    Li LY, Kim S, Wang W, Vijayakumar M, Nie ZM, Chen BW, Zhang JL, Xia GG, Hu JZ, Graff G, Liu J, Yang ZG (2011) Adv Energy Mater 1:394CrossRefGoogle Scholar
  16. 16.
    Sun B, Skyllas-Kazacos M (1992) Electrochim Acta 37:2459CrossRefGoogle Scholar
  17. 17.
    Li XG, Huang KL, Liu SQ, Tan N, Chen LQ (2007) Tran Nonferrous Metals Soc China 17:195CrossRefGoogle Scholar
  18. 18.
    Yue L, Li W, Sun F, Zhao L, Xing L (2010) Carbon 48:3079CrossRefGoogle Scholar
  19. 19.
    Shao Y, Wang X, Engelhard M, Wang C, Dai S, Liu J, Yang Z, Lin Y (2010) J Power Sources 195:4375CrossRefGoogle Scholar
  20. 20.
    Skyllas-Kazacos M, Peng C, Cheng M (1999) Electrochem. Solid State Lett 2:121CrossRefGoogle Scholar
  21. 21.
    Li S, Huang K, Liu S, Fang D, Wu X, Lu D, Wu T (2011) Electrochim Acta 56:5483CrossRefGoogle Scholar
  22. 22.
    Wu X, Liu S, Wang N, Peng S, He Z (2012) Electrochim Acta 78:475CrossRefGoogle Scholar
  23. 23.
    Sun B, Skyllas-Kazakos M (1991) Electrochim Acta 36:513CrossRefGoogle Scholar
  24. 24.
    Wu X, Wang J, Liu S, Wu X, Li S (2011) Electrochim Acta 56:10197CrossRefGoogle Scholar
  25. 25.
    Bard AJ, Faulkner LR (2001) Electrochemical methods, fundamental and applications, John Wiley & Sons. N Y 99:236Google Scholar
  26. 26.
    Liang X, Peng S, Lei Y, Gao C, Wang N, Liu S, Fang D (2013) Electrochim Acta 95:80CrossRefGoogle Scholar
  27. 27.
    Xiong F, Zhou D, Xie Z, Chen Y (2012) Appl Energy 99:291CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Zhangxing He
    • 1
  • Lei Chen
    • 1
  • Yaoyi He
    • 1
  • Chen Chen
    • 1
  • Yifan Jiang
    • 1
  • Zhen He
    • 1
  • Suqin Liu
    • 1
  1. 1.Key Laboratory of Resources Chemistry of Nonferrous Metals, Ministry of Education, School of Chemistry and Chemical EngineeringCentral South UniversityChangshaChina

Personalised recommendations