Ionics

, Volume 19, Issue 12, pp 1705–1714 | Cite as

Electrochemical promotion of propane oxidation over Pd, Ir, and Ru catalyst-electrodes deposited on YSZ

  • S. Peng-ont
  • S. Souentie
  • S. Assabumrungrat
  • P. Praserthdam
  • S. Brosda
  • C. G. Vayenas
Original Paper

Abstract

The effect of electrochemical promotion of catalysis was investigated for the oxidation of propane using Pd, Ir, and Ru catalyst-electrodes sputter-deposited on YSZ disks in the temperature range of 250–450 °C. Electrophobic type behavior was observed, i.e., the catalytic reaction rate was found to increase with catalyst potential. The observed rate changes under polarization were strongly non-Faradaic and exceeded under anodic potential application the electrocatalytic rate of O2− supply to the catalyst surface, I/2F, by up to a factor of 250 for Pd, 125 for Ir, and 15 for Ru catalyst-electrodes.

Keywords

Propane oxidation Electrochemical promotion EPOC NEMCA Pd Ir Ru Catalyst-electrode Yttria-stabilized zirconia 

Notes

Acknowledgments

Saranya Peng-ont, Suttichai Assabumrungrat, and Piyasan Praserthdam would like to thank the financial supports from the Royal Golden Jubilee PhD program under the Thailand Research Fund and the Chulalongkorn University, and the TRF senior researcher scholar under the Thailand Research Fund. Susanne Brosda and Constantinos G. Vayenas gratefully thank the “Synergasia” and “Aristeia” programs of the Greek Secretary of Research and Technology (GSRT) for partial financial support.

References

  1. 1.
    Gélin P, Primet M (2007) Complete oxidation of methane at low temperature over noble metal based catalysts: a review. Appl Catal B 39:1Google Scholar
  2. 2.
    Gélin P, Urfels L, Primet M, Tena E (2003) Complete oxidation of methane at low temperature over Pt and Pd catalysts for the abatement of lean-burn natural gas fuelled vehicles emissions: influence of water and sulphur containing compounds. Catal Today 83:45CrossRefGoogle Scholar
  3. 3.
    Ciuparu D, Pfefferle L (2001) Methane combustion activity of supported palladium catalysts after partial reduction. Appl Catal A 218:197CrossRefGoogle Scholar
  4. 4.
    Ciuparu D, Lyubovsky MRL, Altman E, Pfefferle LD, Datye A (2002) Catalytic combustion of methane over Palladium–based catalysts. Catal Rev 44:593CrossRefGoogle Scholar
  5. 5.
    Glinrun T, Mekasuwandumrong O, Panpranot J, Chaisuk C, Praserthdam P (2010) Improvement of propane oxidation activity over Pt/Al2O3 by the use of MIXED γ- and χ-Al2O3 supports. Reac Kinet Mech Cat 100:441Google Scholar
  6. 6.
    Vernoux P, Lizarraga L, Tsampas MN, Sapountzi FM, De Lucas-Consuegra A, Valverde JL, Souentie S, Vayenas CG, Tsiplakides D, Balomenou S, Baranova EA (2013) Ionically conducting ceramics as active catalyst supports. Chem Rev. doi:10.1021/cr4000336
  7. 7.
    Vayenas CG, Bebelis SB, Pliangos C, Brosda S, Tsiplakidis D (2001) Electrochemical activation of catalysis: promotion, electrochemical promotion and metal-support interactions. Kluwer, New YorkGoogle Scholar
  8. 8.
    Jiménez-Borja C, de Lucas-Consuegra A, Valverde JL, Dorado F, Caravaca A, Gonzáles J, (2012) On of the recent discoveries in catalysis: The phenomenon of electrochemical promotion. In: Taylor JC (ed) Advances in chemistry research, vol 14 ch 4. Nova Science Publishers, Hauppauge NY, USAGoogle Scholar
  9. 9.
    Lizarraga L, Guth M, Billard A, Vernoux P (2010) Electrochemical catalysis for propane combustion using nanometric sputtered-deposited Pt films. Catal Tod 157:61CrossRefGoogle Scholar
  10. 10.
    Tsampas MN, Sapountzi FM, Boréave A, Vernoux P (2013) Isotopical labeling mechanistic studies of electrochemical promotion of propane combustion on Pt/YSZ. Electrochem Comm 26:13CrossRefGoogle Scholar
  11. 11.
    Souentie S, Lizarraga L, Papaioannou EI, Vayenas CG, Vernoux P (2010) Permanent electrochemical promotion of C3H8 oxidation over thin sputtered Pt films. Electrochem Comm 12:1133CrossRefGoogle Scholar
  12. 12.
    Vernoux P, Gaillard F, Bultel L, Siebert E, Primet M (2002) Electrochemical promotion of propane and propene oxidation on Pt/YSZ. J Catal 208:412CrossRefGoogle Scholar
  13. 13.
    Kokkofitis C, Stoukides M (2006) Rate and oxygen activity oscillations during propane oxidation on Pt/YSZ. J Catal 243:428CrossRefGoogle Scholar
  14. 14.
    Kokkofitis C, Karagiannakis G, Zisekas S, Stoukides M (2005) Catalytic study and electrochemical promotion of propane oxidation on Pt/YSZ. J Catal 234:476CrossRefGoogle Scholar
  15. 15.
    Kokkofitis C, Karagiannakis G, Stoukides M (2007) Electrochemical promotion in O2– cells during propane oxidation. Topics in Catal 44:361CrossRefGoogle Scholar
  16. 16.
    Kotsionopoulos N, Bebelis S (2005) Electrochemical promotion of the oxidation of propane on Pt/YSZ and Rh/YSZ catalyst-electrodes. J Appl Electrochem 35:1253CrossRefGoogle Scholar
  17. 17.
    Bebelis S, Kotsionopoulos N (2006) Non-faradaic electrochemical modification of the catalytic activity for propane combustion of Pt/YSZ and Rh/YSZ catalyst-electrodes. Solid State Ionics 177:2205CrossRefGoogle Scholar
  18. 18.
    Kambolis A, Lizarraga L, Tsampas MN, Burel L, Rieu M, Viricelle JP, Vernoux P (2012) Electrochemical promotion of catalysis with highly dispersed Pt nanoparticles. Electrochem Comm 19:5CrossRefGoogle Scholar
  19. 19.
    Peng-Ont S, Praserthdam P, Matei F, Ciuparu D, Brosda S, Vayenas CG (2012) Electrochemical promotion of propane and methane oxidation on sputtered Pd catalyst-electrodes deposited on YSZ. Catal Lett 142:1336CrossRefGoogle Scholar
  20. 20.
    Vayenas CG, Brosda S, Pliangos C (2001) Rules and mathematical modeling of electrochemical and chemical promotion: 1. Reaction classification and promotional rules. J Catal 203:329CrossRefGoogle Scholar
  21. 21.
    Brosda S, Vayenas CG (2002) Rules and mathematical modeling of electrochemical and classical promotion: 2. Modeling. J Catal 208:38CrossRefGoogle Scholar
  22. 22.
    Vayenas CG, Brosda S, Pliangos C (2003) The double-layer approach to promotion, electrocatalysis, electrochemical promotion and metal-support interactions. J Catal 216:487CrossRefGoogle Scholar
  23. 23.
    Brosda S, Vayenas CG, Wei J (2006) Rules of chemical promotion. Appl Catal B 68:109CrossRefGoogle Scholar
  24. 24.
    Wodiunig S, Comninellis C (1999) Electrochemical promotion of RuO2 catalysts for the gas phase combustion of C2H4. J Europ Ceram Soc 19:931CrossRefGoogle Scholar
  25. 25.
    Constantinou I, Bolzonella I, Pliangos C, Comninellis C, Vayenas CG (2005) Electrochemical promotion of RuO2 catalysts for the combustion of toluene and ethylene. Catal Lett 100:125CrossRefGoogle Scholar
  26. 26.
    Nicole J, Comninellis C (1998) Electrochemical promotion of IrO2 catalyst activity for the gas phase combustion of ethylene. J Appl Electrochem 28:223CrossRefGoogle Scholar
  27. 27.
    Tsiplakides D, Nicole J, Vayenas CG, Comninellis C (1998) Work function and catalytic activity measurements of an IrΟ2 film deposited on YSZ subjected to in situ electrochemical promotion. J Electrochem Soc 145:905CrossRefGoogle Scholar
  28. 28.
    Bebelis S, Vayenas CG (1989) Non-Faradaic electrochemical modification of catalytic activity: 1. The case of ethylene oxidation on Pt. J Catal 118:125CrossRefGoogle Scholar
  29. 29.
    Marwood M, Vayenas CG (1998) Electrochemical promotion of Pt catalyst dispersed on Au electrodes deposited on stabilized zirconia. J Catal 178:429CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • S. Peng-ont
    • 1
    • 2
  • S. Souentie
    • 1
  • S. Assabumrungrat
    • 2
  • P. Praserthdam
    • 2
  • S. Brosda
    • 1
  • C. G. Vayenas
    • 1
  1. 1.LCEP, Department of Chemical EngineeringUniversity of PatrasPatrasGreece
  2. 2.Center of Excellence in Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of EngineeringChulalongkorn UniversityBangkokThailand

Personalised recommendations