Skip to main content
Log in

Capacity fading reason of LiNi0.5Mn1.5O4 with commercial electrolyte

  • Short Communication
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The cycling performances of LiNi0.5Mn1.5O4 (LNMO) were investigated and the reasons of capacity fading were discussed. The results show that LNMO can deliver about 115 mAh g−1 at 1C at different temperatures; however, it retains only 61.57 % of its initial capacity after 130th cycles at 60 °C, which is much lower than 94.46 % of LNMO at 25 °C, and the cycling performance at 1C is better than that at 0.5C. The reason of capacity fading of LNMO at 60 °C is mainly due to the lower decomposition voltage of 4.3 V with commercial electrolyte and the larger decomposition current, of which the electrolyte decomposes and interacts with active materials to lead to the larger irreversible capacity loss. While the worse cycling performance at low rate is attributed to the longer interaction time between the electrolyte with the decomposition voltage of 4.5 V and the active materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Thacheray MM, Johnson CS, Vaughey JT, Li HN, Hachney SA (2005) J Mater Chem 15:2557

    Article  Google Scholar 

  2. Liu GQ, Wen L, Liu YM (2011) J Solid State Electrochem 14:2191

    Article  Google Scholar 

  3. Johnson CS, Li N, Lefief C, Vaughey JT, Thackeray MM (2008) Chem Mater 20:6095

    Article  CAS  Google Scholar 

  4. Hong J, Seo DH, Kim SW, Gwon H, Oh ST, Kang K (2010) J Mater Chem 20:10179

    Article  CAS  Google Scholar 

  5. Sun YK, Hong KJ, Prakash J, Amine K (2002) Eletrochem Commun 4:344

    Article  CAS  Google Scholar 

  6. Santhanam R, Rambabu B (2010) J Power Sources 195:5442

    Article  CAS  Google Scholar 

  7. Shin DW, Manthiram A (2011) Eletrochem Commun 13:1213

    Article  CAS  Google Scholar 

  8. Liu J, Manthiram A (2009) J Phys Chem C 113:15073

    Google Scholar 

  9. Zhong GB, Wang YY, Zhang ZC, Chen CH (2011) Electrochim Acta 56:6554

    Article  CAS  Google Scholar 

  10. Shi JY, Yi CW, Kim K (2010) J Power Sources 195:6860

    Article  CAS  Google Scholar 

  11. Locati C, Lafont U, Simonin L, Ooms F, Kelder EM (2007) J Power Sources 174:847

    Article  CAS  Google Scholar 

  12. Duncan H, Duguay D, Lebdeh YA, Davidson IJ (2011) J Electrochem Soc 158:A537

    Article  CAS  Google Scholar 

  13. Yang L, Ravdel B, Lucht BL (2010) Electrochem Solid State Lett 13:A95

    Article  CAS  Google Scholar 

  14. Talyossef Y, Markovsky B, Salitra G, Aurbach D, Kim HJ, Choi S (2005) J Power Sources 146:664

    Article  Google Scholar 

  15. Aurbach D, Markovsky B, Talyossef Y, Salitra G, Kim HJ, Choi S (2006) J Power Sources 162:780

    Article  CAS  Google Scholar 

  16. Markovsky B, Talyossef Y, Salitra G, Aurbach D, Kim HJ, Choi S (2004) Electrochem Commun 6:821

    Article  CAS  Google Scholar 

  17. Chen XL, Xu W, Xiao J, Engelhard MH, Ding F, Mei DH, Hu DH (2012) J Power Sources 213:160

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The work was financially supported by the Major Special Programs of Science and Technology of Hunan Province (2011FJ1005), which is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinhai Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, X., Li, X., Wang, Z. et al. Capacity fading reason of LiNi0.5Mn1.5O4 with commercial electrolyte. Ionics 19, 379–383 (2013). https://doi.org/10.1007/s11581-012-0835-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-012-0835-4

Keywords

Navigation