, Volume 19, Issue 7, pp 1021–1026 | Cite as

Carbon paper modified by hydrothermal ammoniated treatment for vanadium redox battery

  • Zhangxing He
  • Anqun Su
  • Chao Gao
  • Zhi Zhou
  • Chunyue Pan
  • Suqin Liu
Original Paper


Modification of carbon paper by hydrothermal ammoniated treatment for vanadium redox battery was investigated in this paper. The content of nitrogen in the carbon paper improved from 2.957 to 6.432 % due to the introduced of nitrogenous groups. The surface smoothness and morphology of carbon fiber did not change after the hydrothermal ammoniated treatment. In the mean time, the hydrophilicity has been enhanced because of the introduction of nitrogenous groups to the surface of carbon paper. The sample, which was treated at 220 °C for 15 h, shows the best performance in electrochemical activity and charge–discharge among all the samples. At the current density of 20 mA/cm2 after 50th cycles, the coulombic efficiency, voltage efficiency, as well as energy efficiency of the fabricated cell has reached up to 97.2, 85.3, and 82.9 %, respectively. It indicates the hydrothermal ammoniated treatment might be a promising approach to modify carbon paper for vanadium redox battery.


Carbon paper Modification Vanadium redox battery Hydrothermal ammoniated treatment 


  1. 1.
    Rahman F, Skyllas-Kazacos M (2009) J Power Sources 189:1212CrossRefGoogle Scholar
  2. 2.
    Sun B, Skyllas-Kazacos M (1992) Electrochim Acta 37:1253CrossRefGoogle Scholar
  3. 3.
    Kim S, Yan J, Schwenzer B, Zhang J, Li L, Liu J, Yang Z, Hickner MA (2010) Electrochem Commun 12:1650CrossRefGoogle Scholar
  4. 4.
    Teng X, Lei J, Gu X, Dai J, Zhu Y, Li F (2012) Ionics 18:513CrossRefGoogle Scholar
  5. 5.
    Kim S, Vijayakumar M, Wang W, Zhang J, Chen B, Nie Z (2011) PCCP 13:18186CrossRefGoogle Scholar
  6. 6.
    Li LY, Kim S, Wang W, Vijayakumar M, Nie ZM, Chen BW (2011) Adv Energy Mater 1:394CrossRefGoogle Scholar
  7. 7.
    Kamarudin SK, Daud WRW, Ho SL, Hasran UA (2007) J Power Sources 163:743CrossRefGoogle Scholar
  8. 8.
    Kaneko H, Nozaki K, Wada Y, Aoki T, Negishi A, Kamimoto M (1991) Electrochim Acta 36:1191CrossRefGoogle Scholar
  9. 9.
    Rychcik M, Skyllas-Kazacos M (1987) J Power Sources 19:45CrossRefGoogle Scholar
  10. 10.
    Sun B, Skyllas-Kazakos M (1991) Electrochim Acta 36:513CrossRefGoogle Scholar
  11. 11.
    Sun B, Skyllas-Kazacos M (1992) Electrochim Acta 37:2459CrossRefGoogle Scholar
  12. 12.
    Li XG, Huang KL, Liu SQ, Tan N, Chen LQ (2007) Trans Nonferrous Met Soc China 17:195CrossRefGoogle Scholar
  13. 13.
    Wang WH, Wang XD (2007) Electrochim Acta 52:6755CrossRefGoogle Scholar
  14. 14.
    Yue L, Li W, Sun F, Zhao L, Xing L (2010) Carbon 48:3079CrossRefGoogle Scholar
  15. 15.
    Shao Y, Wang X, Engelhard M, Wang C, Dai S, Liu J, Yang Z, Lin Y (2010) J Power Sources 195:4375CrossRefGoogle Scholar
  16. 16.
    Wu T, Huang KL, Liu SQ, Zhuang SX, Fang D, Li S, Lu D, Su AQ (2012) J Solid State Electrochem 16:579CrossRefGoogle Scholar
  17. 17.
    Yao YL, Ding Y, Ye LS, Xia XH (2006) Carbon 44:61CrossRefGoogle Scholar
  18. 18.
    Vuković G, Marinković A, Obradović M, Radmilović V, Čolić M, Aleksić R, Uskoković PS (2009) Appl Surf Sci 255:8067CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Zhangxing He
    • 1
  • Anqun Su
    • 1
  • Chao Gao
    • 1
  • Zhi Zhou
    • 1
  • Chunyue Pan
    • 1
  • Suqin Liu
    • 1
  1. 1.Key Laboratory of Resources Chemistry of Nonferrous Metals, Ministry of Education, School of Chemistry and Chemical EngineeringCentral South UniversityChangshaChina

Personalised recommendations