Skip to main content
Log in

Investigation of electronic and ionic transport properties in α-MoO3 cathode material by electrochemical impedance spectroscopy

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Electrochemical impedance spectra (EIS) for lithium ion insertion and extraction in α-MoO3 cathode material were obtained at different potentials during initial discharge–charge cycle. A significant “three semicircles” were obtained at 0.5 V in the Nyquist diagram, and were assigned to lithium ion migration through solid electrolyte interphase (SEI) film, the electronic properties of the material as well as charge transfer step, respectively. An equivalent circuit that includes elements related to the electronic and ionic transport, in addition to the charge transfer process, is proposed to simulate the experimental EIS data. The variations of the resistance of SEI film, the electronic conductivity of the material and the resistance of charge transfer along with the increase and decrease of electrode polarization potential were quantitatively analyzed, and the reasonable explanation is given. Furthermore, the chemical diffusion coefficients of lithium ion in α-MoO3 cathode material were calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Chernova NA, Roppolo M, Dillon AC, Whittingham MS (2009) J Mater Chem 19:2526–2552

    Article  CAS  Google Scholar 

  2. Lou XW, Zeng HC (2002) Chem Mater 14:4781–4789

    Article  CAS  Google Scholar 

  3. Mai LQ, Hu B, Chen W, Qi YY et al (2007) Adv Mater 19:3712–3716

    Article  CAS  Google Scholar 

  4. Besenhard JO, Heydecke J, Fritz HP (1982) Solid State Ionics 6(3):215

    Article  CAS  Google Scholar 

  5. Besenhard JO, Heydecke J, Wudy E et al (1983) Solid State Ionics 8:61

    Article  CAS  Google Scholar 

  6. Brezesinski T, Wang J, Tolbert S et al (2010) Nat Mater 9:146–151

    Article  CAS  Google Scholar 

  7. Julien C, Hussain OM, El-Farh L et al (1992) Solid State Ionics 53–56:400–404

    Article  Google Scholar 

  8. Iriyama Y, Abe T, Inaba M, Ogumi Z (2000) Solid State Ionics 135:95

    Article  CAS  Google Scholar 

  9. Natasha A, Chernova MR (2009) J Mater Chem 19:2526–2552

    Article  Google Scholar 

  10. Leroux F, Nazar LF (2000) Solid State Ionics 133:37–50

    Article  CAS  Google Scholar 

  11. Yamada Y, Iriyama Y, Abe T (2009) Langmuir 25(21):12766–12770

    Article  CAS  Google Scholar 

  12. Ruffo R, Hong SS, Cui Y et al (2009) J Phys Chem C 113:11390–11398

    Article  CAS  Google Scholar 

  13. Kazakopoulos A, Sarafidis C, Kalogirou O et al (2008) Solid State Ionics 179:1980–1985

    Article  CAS  Google Scholar 

  14. Huang XH, Tu JP, Wu HM et al (2007) Electrochim Acta 52:4177–4181

    Article  CAS  Google Scholar 

  15. Kang YM, Song MS, Dou SX et al (2005) Electrochim Acta 50:3667–3673

    Article  CAS  Google Scholar 

  16. UchidaM I, Mohamedi M, Dokko K et al (2001) J Power Sources 97–98:518–524

    Article  Google Scholar 

  17. Liu H, Wang GX, Zhang C et al (2009) Electrochim Acta 54:1733–1736

    Article  CAS  Google Scholar 

  18. Liu Y, Zhang XG (2009) Electrochim Acta 54:4180–4185

    Article  CAS  Google Scholar 

  19. Bomio M, Lavela P, Tirado JL (2008) J Solid State Electrochem 12:729–737

    Article  CAS  Google Scholar 

  20. Doia T, Yahiro T, Okada S et al (2008) J Electrochim Acta 53:8064

    Article  Google Scholar 

  21. Itagaki M, Kobari N, Yotsuda S et al (2005) J Power Sources 148:78

    Article  CAS  Google Scholar 

  22. Morita M, Yamada O, Ishikawa M (1999) J Power Sources 81–82:425

    Article  Google Scholar 

  23. Striebel KA, Sakai E, Cairns EJ (2002) J Electrochem Soc 149:A61

    Article  CAS  Google Scholar 

  24. Mai LQ, Hu B, Chen W, Qi Y, Lao C, Yang R, Dai Y, Wang ZL (2007) Adv Mater 19:3712

    Article  CAS  Google Scholar 

  25. Tsumura T, Inagaki M (1997) Solid State Ionics 104:183

    Article  CAS  Google Scholar 

  26. Joseph WB, Richard LS (2003) Solid State Ionics 160:335–349

    Article  Google Scholar 

  27. Besenhard JO, Heydecke J, Foag W et al (1983) Solid State Ionics 8:61–71

    Article  CAS  Google Scholar 

  28. Dickens PG, Reynolds G (1981) Solid State Ionics 5:331–334

    Article  CAS  Google Scholar 

  29. Spahr ME, Novak P, Haas O, Nesper R (1985) Power Sources 54:346–351

    Article  Google Scholar 

  30. Levi MD, Salitra G, Markovsky B et al (1999) J Electrochem Soc 146:1279–1289

    Article  CAS  Google Scholar 

  31. Levi MD, Gamolsky K, Aurbach D et al (2000) Electrochim Acta 45:1781–1789

    Article  CAS  Google Scholar 

  32. Zhuang QC, Wei T, Du LL, Cui YL, Fang L, Sun SG (2010) J Phys Chem C 114:8614–8621

    Article  CAS  Google Scholar 

  33. Qiu XY, Zhuang QC, Zhang QQ et al (2012) Phys Chem Chem Phys 14:2617–2630

    Article  CAS  Google Scholar 

  34. Bryngelsson H, Stjerndahl M, Gustafsson T, Edstrom K (2007) J Power Sources 174:970

    Article  CAS  Google Scholar 

  35. Edstrom K, Herstedt M, Abraham DP (2006) J Power Sources 153:380

    Article  Google Scholar 

  36. Kumagai N, Kumagai N, Tanno K (1988) J Appl Electrochem 18:857

    Article  CAS  Google Scholar 

  37. Hassan MF, Guo ZP, Chenb Z, Liua HK (2010) J Power Sources 195:2372

    Article  CAS  Google Scholar 

  38. Hashim AM, Wrodnigg GH, Askar MH, Winter M (2002) Ionics 8:183

    Article  CAS  Google Scholar 

  39. Hashem AM, Askar M, Winter M (2007) Ionics 13:3

    Article  CAS  Google Scholar 

  40. Wang J, Li WZ, Yu CY (1997) React Kinet Catal Lett 62:217

    Article  CAS  Google Scholar 

  41. Mott NF (1990) In: Metal- insulator transitions. Taylor & Francis, London

    Google Scholar 

  42. Mott NF (1969) Festkörperprobleme 9:22–45

    Google Scholar 

  43. Jolanta SM, de Soline D, Vincent M et al (2008) J Phys Chem C 112:11050–11058

    Article  Google Scholar 

  44. Yoon SJ, Lee S, Ahn D, Anne C, Lee S (2009) J Power Sources 188:286

    Article  Google Scholar 

  45. Levi MD, Gamosky K, Aurbach D (2000) Electrochim 45:1781

    Article  CAS  Google Scholar 

  46. Li WY, Cheng FY, Tao ZL (2006) J Phys Chem B 110:119–124

    Article  CAS  Google Scholar 

  47. Weppner W, Huggins RA (1978) Annu Rev Mater Sci 8:269–311

    Article  CAS  Google Scholar 

  48. Weppner W, Huggins RA (1978) JEC, Washington

  49. Xie J, Kohno K, Matsumura T et al (2008) Electrochim Acta 54:376

    Article  CAS  Google Scholar 

  50. Tang SB, Lai MO, Lu L (2008) Mater Chem Phys 111:149

    Article  CAS  Google Scholar 

  51. Mohamedi M, Makino M, Dokko K et al (2002) Electrochim Acta 48:79

    Article  CAS  Google Scholar 

  52. Ho C, Raistrick ID, Huggins RA (1980) J Electrochem Soc 127:343

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fundamental Research Funds for the Central Universities (2010LKHX03), Jiangsu Planned Projects for Postdoctoral Research Funds (1201030C)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quanchao Zhuang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bao, W., Zhuang, Q., Xu, S. et al. Investigation of electronic and ionic transport properties in α-MoO3 cathode material by electrochemical impedance spectroscopy. Ionics 19, 1005–1013 (2013). https://doi.org/10.1007/s11581-012-0823-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-012-0823-8

Keywords

Navigation