Skip to main content
Log in

Effect of the degree of alloying of PtRu/C (1:1) catalysts on ethanol oxidation

Ionics Aims and scope Submit manuscript

Cite this article

Abstract

The effect of alloying degree on the ethanol oxidation activity of a PtRu/C catalyst with a Pt/Ru atomic ratio of 1:1 was investigated by measurements in a half-cell and in a single direct ethanol fuel cell. The increase of the amount of Ru alloyed from one third to two thirds of the total Ru content in the catalyst clearly resulted in a decrease of the ethanol oxidation activity. As the amount of the highly active hydrous ruthenium oxide was near the same, the lower activity of the PtRu/C catalyst with higher alloying degree was mainly ascribed to the presence of an excessive number of Ru atoms around Pt active sites, hindering ethanol adsorption on Pt sites. The reduced ethanol adsorption could be also related to the decreased Pt–Pt bond distance and to the electronic effects by alloying.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Lamy C, Belgsir EM, Léger J-M (2001) Electrochem J Appl 31(2001):799

    Article  CAS  Google Scholar 

  2. Antolini E (2007) J Power Sources 170:1

    Article  CAS  Google Scholar 

  3. Antolini E, Gonzalez ER (2011) Catal Today 160:28

    Article  CAS  Google Scholar 

  4. Antolini E (2009) Platinum alloys as anode catalysts for direct methanol fuel cells. In: Liu H, Zhang J (eds) Electrocatalysis of direct methanol fuel cells: from fundamentals to applications. Wiley-VCH, Weinheim, p 227

    Chapter  Google Scholar 

  5. Rolison DR, Hagans PL, Swider KE, Long JW (1999) Langmuir 15:774

    Article  CAS  Google Scholar 

  6. Long JW, Stroud RM, Swider-Lyons KE, Rolison DR (2000) J Phys Chem B 104:9772

    Article  CAS  Google Scholar 

  7. Papageorgopoulos DC, de Heer MP, Keijzer M, Pieterse JAZ, de Bruijn FA (2004) J Electrochem Soc 151:A763

    Article  CAS  Google Scholar 

  8. Lu Q, Yang B, Zhuang L, Lu J (2005) J Phys Chem B 109:8873

    Article  CAS  Google Scholar 

  9. Camara GA, de Lima RB, Iwasita T (2004) Electrochem Comm 6:812

    Article  CAS  Google Scholar 

  10. Camara GA, Giz MJ, Paganin VA, Ticianelli EA (2002) J Electroanal Chem 537:21

    Article  CAS  Google Scholar 

  11. Datta J, Singh S, Das S, Bandyopadhyay NR (2009) Bull Mater Sci 32:643

    Article  CAS  Google Scholar 

  12. Lee CG, Ojima H, Umeda M (2008) Electrochim Acta 53:3029

    Article  CAS  Google Scholar 

  13. Oliveira Neto A, Giz MJ, Perez J, Ticianelli EA, Gonzalez ER (2002) J Electrochem Soc 149:A272

    Article  CAS  Google Scholar 

  14. Colmenares L, Wang H, Jusys Z, Jiang L, Yan S, Sun GQ, Behm RJ (2006) Electrochim Acta 52:221

    Article  CAS  Google Scholar 

  15. Şen S, Şen F (2011) G Phys Chem Chem Phys 13:1676

    Article  Google Scholar 

  16. Spinacé EV, Oliveira Neto A, Linardi M (2003) J Power Sources 124:426

    Article  Google Scholar 

  17. Spinacé EV, Oliveira Neto A, Vasconcelos TRR, Linardi M (2004) J Power Sources 137:17

    Article  Google Scholar 

  18. Datta J, Gupta SS, Singh S, Mukherjee S, Mukherjee M (2011) Mater Manufact Proc 26:261

    Article  CAS  Google Scholar 

  19. Tolentino H, Compagnon-Cailhol V, Vicentin FC, Abbate M (1998) J Synchrotron Radiat 5:539

    Article  CAS  Google Scholar 

  20. Antolini E, Cardellini F, Giorgi L, Passalacqua E (2000) J Mater Sci Lett 19:2099

    Article  CAS  Google Scholar 

  21. Van Hardeveld R, Hartog F (1969) Surf Sci 15:189

    Article  Google Scholar 

  22. Roth C, Goetz M, Fuess H (2001) J Appl Electrochem 31:793

    Article  CAS  Google Scholar 

  23. Antolini E, Giorgi L, Cardellini F, Passalacqua E (2001) J Solid State Electrochem 5:131

    Article  CAS  Google Scholar 

  24. Vedrine JC, Dufaux M, Naccache C, Imelik B (1978) J Chem Soc Faraday Trans 1 74:440

    Google Scholar 

  25. Villullas HM, Mattos-Costa FI, Nascente PAP, Bulhoes LOS (2006) Chem Mater 18:5563

    Article  CAS  Google Scholar 

  26. Yang C, Wang D, Hu X, Dai C, Zhang L (2008) J All Comp 448:109

    Article  CAS  Google Scholar 

  27. Szabo S, Bakos I, Nagy F (1989) J Electroanal Chem 271:269

    Article  CAS  Google Scholar 

  28. Gojković SL, Vidaković TR, Đurović DR (2003) Electrochim Acta 48:3607

    Article  Google Scholar 

  29. dos Santos L, Colmati F, Gonzalez ER (2006) J Power Sources 159:869

    Article  Google Scholar 

  30. Wu G, Li L, Xu B-Q (2004) Electrochim Acta 50:1

    Article  CAS  Google Scholar 

  31. Lopes PP, Ticianelli EA (2007) Quím Nova 30:1256

    Article  CAS  Google Scholar 

  32. Colmati F, Antolini E, Gonzalez ER (2008) J Solid State Electrochem 12:591

    Article  CAS  Google Scholar 

  33. Antolini E, Colmati F, Gonzalez ER (2009) J Power Sources 193:555

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP, Proc. 2010/20045-0) for the financial assistance to the project. F.I. Pires (Proc. 160503/2011-6) and P.G. Corradini (Proc. 131469/2011-8) thank the CNPq for the fellowships granted. The authors wish to thank the Brazilian Synchrotron Light Laboratory (LNLS) for assisting with the XPS measurements (Project SXS-13594).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ermete Antolini.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pires, F.I., Corradini, P.G., Paganin, V.A. et al. Effect of the degree of alloying of PtRu/C (1:1) catalysts on ethanol oxidation. Ionics 19, 1037–1045 (2013). https://doi.org/10.1007/s11581-012-0822-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-012-0822-9

Keywords

Navigation