Skip to main content
Log in

Hierarchical nanostructure CuO with peach kernel-like morphology as anode material for lithium-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Copper oxide particles with different morphology (flower-like, peach kernel-like, and dandelion-like) are prepared with hydrothermal method by adjusting chitosan ((C6H11NO4)n) concentration in aqueous mixed solutions of ammonia and Cu(NO3)2. Various morphologies of porous cupric oxide (CuO) particles are formed by agglomerated nanosheet primary particles and lead to different electrochemical performance of electrodes. The peach kernel-shaped CuO exhibits high reversible capacity and rate capability. The reversible capacity is 722.7 mAh g−1 at 0.1 C in the first cycle and 339 mAh g−1 after 50 cycles at 0.2, 0.5, 1.0, and 2.0 C ratio. The higher reversible capacities and good cycling performance are attributed to the larger specific surface area, leading to better contact between CuO and electrolyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nat 407:496–499

    Article  CAS  Google Scholar 

  2. Liu H, Wang GX, Wang JZ, Wexler D (2008) Electrochem Commun 10:1879–1882

    Article  CAS  Google Scholar 

  3. Taberna PL, Mitra S, Poizot P, Simon P, Tarascon JM (2006) Nat Mater 5:567–573

    Article  CAS  Google Scholar 

  4. Deng D, Lee JY (2008) Chem Mater 20:1841–1846

    Article  CAS  Google Scholar 

  5. Chen YJ, Zhu CL, Xue XY, Shi XL, Cao MS (2008) Appl Phys Lett 92:223101–223103

    Article  Google Scholar 

  6. Yu Y, Chen CH, Shi Y (2007) Adv Mater 19:993–997

    Article  CAS  Google Scholar 

  7. Zhang YL, Liu Y, Liu ML (2006) Chem Mater 18:4643–4646

    Article  CAS  Google Scholar 

  8. Cao L, Wei W, Fanga SM, Wang HX, Zhang Y, Guia YH, Chen RF (2010) J Power Sources 195:2939–2944

    Article  Google Scholar 

  9. Do JS, Weng CH (2005) J Power Sources 146:482–486

    Article  Google Scholar 

  10. Xiang JY, Tu JP, Zhang J, Zhong J, Zhang D, Cheng JP (2010) Electrochem Commun 12:1103–1107

    Article  CAS  Google Scholar 

  11. Wang SQ, Zhang JY, Chen CH (2007) Scr Mater 57:337–340

    Article  CAS  Google Scholar 

  12. Mai YJ, Wang XL, Xiang JY, Qiao YQ, Zhang D, Gu CD, Tu JP (2011) Electrochim Acta 56:2306–2311

    Article  CAS  Google Scholar 

  13. Liu HC, Yen SK (2007) J Power Sources 166:478–484

    Article  CAS  Google Scholar 

  14. Hu YY, Huang XT, Wang K, Liu JP, Jiang J, Ding RM, Ji XX (2010) J Solid State Chem 183:662–667

    Article  CAS  Google Scholar 

  15. Xiang JY, Tu JP, Yuan YF, Wang XL, Huang XH, Zeng ZY (2009) Electrochim Acta 54:1160–1165

    Article  CAS  Google Scholar 

  16. Xiang JY, Tu JP, Zhang L, Zhou Y, Wang XL, Shi SJ (2010) J Power Sources 195:313–319

    Article  CAS  Google Scholar 

  17. Wan M, Jin DL, Feng R, Si LM, Gao MX, Yue LH (2011) Inorg Chem Commun 14:38–41

    Article  CAS  Google Scholar 

  18. Morales J, Sanchez L, Martín F, Ramos-Barrado JR, Sanchez M (2005) Thin Solid Films 474:133–140

    Article  CAS  Google Scholar 

  19. Xiang JY, Tu JP, Huang XH, Yang YZ (2008) J Solid State Electrochem 12:941–945

    Article  CAS  Google Scholar 

  20. Nayak S, Malik S, Indris S, Reedijk J, Powell AK (2010) Chem Eur J 16:1158–1162

    Article  CAS  Google Scholar 

  21. Xing W, Bai P, Li ZF, Yu RJ, Yan ZF, Lu GQ, Lu LM (2006) Electrochim Acta 51:4626–4633

    Article  CAS  Google Scholar 

  22. Guan XF, Li LP, Li GS, Fua ZW, Zheng J, Yan TJ (2011) J Alloys Compd 509:3367–3374

    Article  CAS  Google Scholar 

  23. Debart A, Dupont L, Poizot P, Larcher D, Tarascon JM (2001) J Electrochem Soc 148:A1266–A1274

    Article  CAS  Google Scholar 

  24. Li G, Xue R, Chen L, Huang YZ (1995) J Power Sources 54:271–275

    Article  CAS  Google Scholar 

  25. Aurbach D, Zaban A, Ein-Ein Y, Weissman I, Chusid O, Markovsky B, Levi M, Levi E, Schechter A, Granot E (1997) J Power Sources 68:91–98

    Article  CAS  Google Scholar 

  26. Levi MD, Aurbach D (1997) J Phys Chem B 101:4630–4640

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Project Supported by the Planned Science and Technology Project of Hunan Province, China (2011FJ3160, 2011GK2002) and Project Supported by Scientific Research Fund of Hunan Provincial Education Department (10B054).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanyue Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, C., Guo, J. & Wen, J. Hierarchical nanostructure CuO with peach kernel-like morphology as anode material for lithium-ion batteries. Ionics 19, 253–258 (2013). https://doi.org/10.1007/s11581-012-0756-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-012-0756-2

Keywords

Navigation