Skip to main content
Log in

α-Fe2O3 and Fe3O4 hollow nanospheres as high-capacity anode materials for rechargeable Li-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

α-Fe2O3 and Fe3O4 hollow nanospheres of size 30 ± 2 nm were synthesized by using polymeric micelles as a soft template for the first time. The hollow nanospheres were thoroughly characterized by transmission electron microscope, superconducting quantum interference device, X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetry and differential thermal analysis, cyclic voltammogram, and nitrogen sorption analyses. The α-Fe2O3 and Fe3O4 hollow nanospheres were used as anode materials in lithium-ion rechargeable batteries to investigate their electrochemical properties. The hollow particle-based electrodes exhibit high capacity, stable cycling performance, and good rate capability at different current densities. The α-Fe2O3 and Fe3O4 hollow nanospheres with nanosized shell domain favors fast lithium insertion/extraction processes during the repeated charge/discharges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Armand M, Tarascon JM (2008) Nature 451:652

    Article  CAS  Google Scholar 

  2. Li N, Martin CR, Scrosati B (2001) J Power Sources 97–98:240

    Article  Google Scholar 

  3. Wang H, Abe T, Maruyama S, Iriyama Y, Ogumi Z, Yoshikawa K (2005) Adv Mater 17:2857

    Article  CAS  Google Scholar 

  4. Park M, Kang Y, Wang G, Dou S, Liu H (2008) Adv Funct Mater 18:455

    Article  CAS  Google Scholar 

  5. Chen J, Cheng F (2009) Acc Chem Res 42:713

    Article  CAS  Google Scholar 

  6. Jiang C, Hosono E, Zhou H (2006) NanoToday 1:28

    Article  Google Scholar 

  7. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nature 407:496

    Article  CAS  Google Scholar 

  8. Xu XN, Wolfus Y, Shaulov A, Yeshurun Y, Felner I, Nowik I, Koltypin Y, Gedanken A (2002) Appl Phys Lett 91:4611

    CAS  Google Scholar 

  9. Ji J, Ohkoshi S, Hashimoto K (2004) Adv Mater 16:48

    Article  CAS  Google Scholar 

  10. Woo K, Lee HJ, Ahn JP, Park YS (2003) Adv Mater 20:1761

    Article  CAS  Google Scholar 

  11. Wang X, Chen X, Gao L, Zheng Z, Ji M, Tang C, Sen T, Zhang Z (2004) J Mater Chem 14:905

    Article  CAS  Google Scholar 

  12. Fu YY, Wang RM, Xu J, Chen J, Yan Y, Narlikar AV, Zhang H (2003) Chem Phys Lett 379:373

    Article  CAS  Google Scholar 

  13. Shen XP, Liu HJ, Pan L, Chen KM, Hong JM, Xu Z (2004) Chem Lett 33:1128

    Article  CAS  Google Scholar 

  14. Larcher D, Masquelier C, Bonnin D, Chabre Y, Masson V, Leriche JB, Tarascon JM (2003) J Electrochem Soc 150:A133

    Article  CAS  Google Scholar 

  15. Larcher D, Bonnin D, Rivals I, Personnaz L, Tarascon JM (2003) J Electrochem Soc 150:A1643

    Article  CAS  Google Scholar 

  16. Morales J, Sanchez L, Martin F, Berry F, Ren X (2005) J Electrochem Soc 152:A1748

    Article  CAS  Google Scholar 

  17. Chen J, Xu L, Li W, Gou X (2005) Adv Mater 17:582

    Article  CAS  Google Scholar 

  18. Khanal A, Inoue Y, Yada M, Nakashima K (2007) J Am Chem Soc 129:1534

    Article  CAS  Google Scholar 

  19. Tan H, Xue JM, Shuter B, Li X, Wang J (2010) Adv Funct Mater 20:722

    Article  CAS  Google Scholar 

  20. Bang JH, Suslick KS (2007) J Am Chem Soc 129:2242

    Article  CAS  Google Scholar 

  21. Peng S, Sun S (2007) Angew Chem Int Ed 46:4155

    Article  CAS  Google Scholar 

  22. Yi DK, Selvan ST, Lee SS, Papaefthymiou GC, Kundaliya D, Ying JY (2005) J Am Chem Soc 127:4990

    Article  CAS  Google Scholar 

  23. Xing WB, Dahn JR (1997) J Electrochem Soc 144:1195

    Article  CAS  Google Scholar 

  24. Mukai SR, Hasegawa T, Takagi M, Tamon H (2004) Carbon 42:837

    Article  CAS  Google Scholar 

  25. Zhang WM, Wu XL, Hu JS, Guo YG, Wan LJ (2008) Adv Funct Mater 18:3941

    Article  CAS  Google Scholar 

  26. Tartaj P, Amarilla JM (2011) J Power Sources 196:2164

    Article  CAS  Google Scholar 

  27. Guo YG, Hu YS, Sigle W, Maier J (2007) Adv Mater 19:2087

    Article  CAS  Google Scholar 

  28. Aifantis KE, Huang T, Hackney SA, Sarakonsri T, Yu A (2012) J Power Sources 197:246

    Article  CAS  Google Scholar 

  29. Taberna PL, Mitra S, Poizot P, Simon P, Tarascon JM (2006) Nat Mater 5:567

    Article  CAS  Google Scholar 

  30. Ban C, Wu Z, Gillaspie DT, Chen L, Yan Y, Blacburn JL, Dillion AC (2010) Adv Mater 22:E145

    Article  CAS  Google Scholar 

Download references

Acknowledgments

One of the authors (KN) thanks the Japan Society for the Promotion of Science for a Grant-in-Aid for Scientific Research (20310054).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenichi Nakashima.

Electronic supplementary material

DLS, TG/DTA, FTIR and SQUID data.

Below is the link to the electronic supplementary material.

ESM 1

(DOC 166 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sasidharan, M., Gunawardhana, N., Yoshio, M. et al. α-Fe2O3 and Fe3O4 hollow nanospheres as high-capacity anode materials for rechargeable Li-ion batteries. Ionics 19, 25–31 (2013). https://doi.org/10.1007/s11581-012-0716-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-012-0716-x

Keywords

Navigation