Skip to main content

Computational investigation on alcohol nanosensors in combination with carbon nanotube: a Monte Carlo and ab initio simulation

Abstract

Single-walled nanocarbons (SWNT) are common nanovehicles of interest for making biosensors more sensitive. Carbon nanotubes (CNTs) have many distinct properties, causing them to be exploited in the development of the next generation of such nanosensors. The keto–enol tautomerization is one of the most common investigated subjects of isomerism in this regard; sensors are devices that are able to detect and change the physical properties of such reactions. Some chemicals with the properties to do keto–enol tautomerization are substituted to CNTs, and the physicochemical properties are simulated. HyperChem is used as the main software to design the CNT sensor, and the main physical properties are calculated after Monte Carlo simulation. In all situations, the energy minimization has been done by MM+, and the fully optimized systems have transferred to Guassian98. After final optimization with 3–21 G, Hartree–Fock (HF) method, SWNT have been linked up to caffeic acid and chlorogenic acid. Then, frequency and intensity were investigated using AM1 and PM3 codes. Also, we determined some nuclear magnetic resonance parameters in the HF method and several basis sets.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Scheme 3
Fig. 4
Fig. 5

References

  1. Bethune DS, Kiang CH, de Vries MS et al (1993) Nature 363:605

    Article  CAS  Google Scholar 

  2. Mollaamin F, Gharibe S, Monajjemi M (2011) Int J Phys Sci 6:1496–1500

    CAS  Google Scholar 

  3. Kurita N, Komura I, Tsukamoto T, Ishikawa Y (2005) Helv Chim Acta 88:751

    Article  Google Scholar 

  4. Daniel S, Rao TP, Rao KS, Rani SU, Naidu GRH, Lee HY, Kawai T (2007) Sensors Actuators B 122:672

    Article  CAS  Google Scholar 

  5. Monajjemi M, Chegini H, Mollaamin F, Farahani P (2011) Fuller Nanotubes Carbon Nanostruct 19:469

    Article  CAS  Google Scholar 

  6. Monajjemi M, Mahdavian L, Mollaamin F (2008) Bull Chem Soc Ethiop 22:1

    Google Scholar 

  7. Sinha N, Ma J, Yeow JTW (2006) J Nanosci Nanotechnol 6:573

    Article  CAS  Google Scholar 

  8. Someya T, Small J, Kim P, Nuckolls C, Yardley JT (2003) Nano Lett 3:877

    Article  CAS  Google Scholar 

  9. Raczyn'ska ED, Duczmal K, Darowska M (2005) Vib Spectrosc 39:37

    Article  CAS  Google Scholar 

  10. Monajjemi M, Lee VS, Khaleghian M, Honarparvar B, Mollaamin F (2010) J Phys Chem C 114:15315

    Article  CAS  Google Scholar 

  11. Monajjemi M, Baei MT, Mollaamin F (2008) Russ J Inorg Chem 53:1430

    Article  Google Scholar 

  12. Liu JCh, Monson PA (2005) Adsorption 11:5

    Article  CAS  Google Scholar 

  13. Monajjemi M, Khaleghian M, Tadayonpour M, Mollaamin F (2010) The effect of different solvents and temperatures on stability of single-walled carbon nanotube: a QM/MD study. Int J Nanosci 9:517–529

    Article  CAS  Google Scholar 

  14. Ono Y, Kusuno N, Kusakabe K, Suzuki N (2009) Conduction properties of a distorted buckled carbon nanotube in the vibrational normal mode. Japan J Appl Phys 48:045001

    Article  CAS  Google Scholar 

  15. Witanowski M, Biedrzycka Z, Sicinska W, Grabowski Z (2002) J Mol Struct 602(603):199

    Article  Google Scholar 

  16. Mora-Diez N, Senent ML, Garcia B (2006) Chem Phys 324:350

    Article  CAS  Google Scholar 

  17. Pople JA, Krishnan R, Schlegel HB, Binkley JS (1979) Int J Quantum Chem (Quantum Chem Symp) 13:225

    CAS  Google Scholar 

  18. Schleyer PvR, Allinger NL, Clark T, Gasteiger J, Kollman PA, Schaefer HF III, Schreiner PR (eds) (1998) The Encyclopedia of Computational Chemistry. John Wiley & Sons, Chichester

    Google Scholar 

  19. Ditchfield R (1974) Mol Phys 27:789

    Article  CAS  Google Scholar 

  20. Wolinski K, Hinton JF, Pulay P (1990) J Am Chem Soc 112:8251

    Article  CAS  Google Scholar 

  21. Mollaamin F, Varmaghani Z, Monajjemi M (2011) Dielectric effect on thermodynamic properties in vinblastine by DFT/Onsager modelling. J Phys Chem Liq 49(3):318–336

    Article  CAS  Google Scholar 

  22. Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP (1985) AM1: a new general purpose quantum mechanical molecular model. J Am Chem Soc 107:3902

    Article  CAS  Google Scholar 

  23. Stewart JJP (1989) Optimization of parameters for semi-empirical methods. I. Method. J Comput Chem 10(209):211

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Monajjemi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Monajjemi, M., Falahati, M. & Mollaamin, F. Computational investigation on alcohol nanosensors in combination with carbon nanotube: a Monte Carlo and ab initio simulation. Ionics 19, 155–164 (2013). https://doi.org/10.1007/s11581-012-0708-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-012-0708-x

Keywords

  • Caffeic acid
  • Chlorogenic acid
  • Single-walled carbon nanotube