Advertisement

Ionics

, Volume 18, Issue 3, pp 315–327 | Cite as

Glow discharge plasma electrolysis for nanoparticles synthesis

  • T. Abdul Kareem
  • A. Anu Kaliani
Reviews

Abstract

There are many methods available to synthesize nanomaterials and the glow discharge plasma electrolysis is a novel and a green method in this category. It is seen that most of the papers are published after 2005 and the interest in it is growing due to its applicability in the industry for preparing nanomaterials at large scale. But, only few results are available yet and most of them are on metal nanoparticle preparation, so that more studies are needed to understand the nature of growth of the nanoparticles under glow discharge in liquid and its applicability in preparing semi-conductor nanomaterials. Many have tried many methods to prepare nanoparticles by the glow discharge and a review like this is the need of the time to understand its present status that helps to modify the present situation to a better one. This review classifies all the available methods of nanomaterials synthesis in liquid by glow discharge in to three and it is discussed in detail.

Keywords

Nanomaterials synthesis Glow discharge plasma electrolysis 

Notes

Acknowledgments

The author is highly indebted to Dr. Asar Ahmad, IIT, Kanpur for his timely help in collecting the literatures for this review.

References

  1. 1.
    Feynman RP (1959) There’s plenty of room at the bottom—an invitation to enter a new field of physics, Presentation at the California Institute of TechnologyGoogle Scholar
  2. 2.
    Bruggeman P, Leys C (2009) Non-thermal plasmas in and in contact with liquids. J Phys D: Appl Phys 42:053001. doi: 10.1088/0022-3727/42/5/053001 CrossRefGoogle Scholar
  3. 3.
    Brisset J-L, Moussa D, Doubla A, Hnatiuc E, Hnatiuc B, Kamgang Youbi G, Herry J-M, Naїtali M, Bellon-Fontaine M-N (2008) Chemical reactivity of discharges and temporal post-discharges in plasma treatment of aqueous media: examples of gliding discharge treated solutions. Ind Eng Chem Res 47:5761–5781CrossRefGoogle Scholar
  4. 4.
    Yerokhin AL, Nie X, Leyland A, Matthews A, Dowey SJ (1999) Plasma electrolysis for surface engineering. Surf CoatTechnol 122:73–93CrossRefGoogle Scholar
  5. 5.
    Graham WG, Stalder KR (2011) Plasmas in liquids and some of their applications in nanoscience. J Phys D: Appl Phys 44(174037):8. doi: 10.1088/0022-3727/44/17/174037 Google Scholar
  6. 6.
    Andrievski RA (1994) The synthesis and properties of nanocrystalline refractory compounds. Russ Chem Rev 63:431–448CrossRefGoogle Scholar
  7. 7.
    Swihart MT (2003) Vapor-phase synthesis of nanoparticles. Curr Opin Colloid Interface Sci 8:127–133CrossRefGoogle Scholar
  8. 8.
    Hahn H (1997) Gas phase synthesis of nanocrystalline materials. Nanostructured Mater 9:3–12CrossRefGoogle Scholar
  9. 9.
    Rao N, Girshick S, Heberlein J (1995) Nanoparticle formation using a plasma expansion process. Plasma Chem Plasma Process 15:581–606CrossRefGoogle Scholar
  10. 10.
    Ananthapadmanabhan PV, Sreekumar KP, Venkatramani N, Sinha PK, Taylor PR (1996) Characterization of plasma-synthesized alumina. J Alloys Compd 244:70–74. doi: 10.1016/S0925-8388(96)02440-1 CrossRefGoogle Scholar
  11. 11.
    Sakka Y, Okuyama H, Uchikoshi T, Ohno S (2002) Synthesis and characterization of Fe and composite Fe-TiN nanoparticles by dc arc-plasma. J Alloys Compd 346:285–291. doi: 10.1016/S0925-8388(02)00514-5 CrossRefGoogle Scholar
  12. 12.
    Karthikeyan J, Berndt CC, Tikkanen J, Reddy S, Herman H (1997) Plasma spray synthesis of nanomaterial powders and deposits. Mater Sci Eng A 238:275–286CrossRefGoogle Scholar
  13. 13.
    Vollath D, Sickafus KE (1993) Synthesis of nanosized ceramic nitride powders by microwave supported plasma reactions. Nanostruct Mater 2:451–456CrossRefGoogle Scholar
  14. 14.
    Vollath D, Vinga Szabó D, Hauβelt J (1997) Synthesis and properties of ceramic nanoparticles and nanocomposites. J Eur Ceram Soc 17:1317–1324. doi: 10.1016/S0955-2219(96)00224-5 CrossRefGoogle Scholar
  15. 15.
    Troitskiy VN, Domashnev IA, Kurkin EN, Grebtsova OM, Berestenko VI, Balikhin IL, Gurov SV (2003) Synthesis and characteristics of ultra-fine superconducting powders in the Nb-N, Nb-N-C, Nb-Ti-N-C systems. J Nanopart Res 5:521–528. doi: 10.1023/B:NANO.0000006072.30306.1f CrossRefGoogle Scholar
  16. 16.
    Gitzhofer F (1996) Induction plasma synthesis of ultrafine SiC. Pure Appl Chem 68:1113–1120CrossRefGoogle Scholar
  17. 17.
    Dundas PH, Thorpe ML (1970) Titanium dioxide production by plasma processing. Chem Eng Prog 66:66–71Google Scholar
  18. 18.
    Sugasawa M, Kikukawa N, Ishikawa N, Kayano N, Kimura T (1998) Synthesis of Y-Fe-O ultrafine particles using inductively coupled plasma. J Aerosol Sci 29:675–686. doi: 10.1016/S0021-8502(97)00463-1 CrossRefGoogle Scholar
  19. 19.
    Girshicka SL, Chiua CP, Munoa R, Wua CY, Yanga L, Singh SK, McMurry PH (1993) Thermal plasma synthesis of ultrafine iron particles. J Aerosol Sci 24:367–382. doi: 10.1016/0021-8502(93)90009-X CrossRefGoogle Scholar
  20. 20.
    Guo JY, Gitzhofer F, Boulos MI (1995) Induction plasma synthesis of ultrafine SiC powders from silicon and CH4. J Mater Sci 30:5589–5599. doi: 10.1007/BF00356691 CrossRefGoogle Scholar
  21. 21.
    Mizoguchi Y, Kagawa M, Suzuki M, Syono Y, Hirai T (1994) Synthesis of ultrafine particles and thin films of BaFe12O19 by the spray-ICP technique. Nanostruct Mater 4:591–596. doi: 10.1016/0965-9773(94)90068-X CrossRefGoogle Scholar
  22. 22.
    Nutsch G, Boer J, Herrmann A, Weiss K-H (1997) Nanoparticle formation using an inductively coupled radio frequency plasma, in ISPC 13, edited by C. K. Wu, Peking University Press, Bejing, China (1997), 1642–1647; http://134.147.148.178/ispcdocs/ispc13/content/13/13-1642.pdf
  23. 23.
    Bouyer E, Müller M, Henne RH, Schiller G (2001) Thermal plasma processing of nanostructured Si-based ceramic materials. J Nanopart Res 3(5-6):373–376. doi: 10.1023/A:1012546917064 Google Scholar
  24. 24.
    Kumar R, Cheang P, Khor KA (2001) RF plasma processing of ultra-fine hydroxyaptite powders. J Mater Process Technol 113:456–462. doi: 10.1016/S0924-0136(01)00611-2 CrossRefGoogle Scholar
  25. 25.
    Akashi K (1985) Progress in thermal plasma deposition of alloys and ceramic fine particles. Pure Appl Chem 57:1197–1206CrossRefGoogle Scholar
  26. 26.
    Chiang W-H, Richmonds C, Mohan Sankaran R (2010) Continuous-flow, atmospheric-pressure microplasmas: a versatile source for metal nanoparticle synthesis in the gas or liquid phase. Plasma Sourc Sci Tech 19(034011):8. doi: 10.1088/0963-0252/19/3/034011 Google Scholar
  27. 27.
    Chiang W-H, Mohan Sankaran R (2007) Microplasma synthesis of metal nanoparticles for gas-phase studies of catalyzed carbon nanotube growth. Appl Phys Lett 91:121503CrossRefGoogle Scholar
  28. 28.
    Granqvist CG, Buhrman RA (1976) Ultrafine metal particles. J Appl Phys 47:2200–2219CrossRefGoogle Scholar
  29. 29.
    Pratsinis SE (1998) Flame aerosol synthesis of ceramic powders. Progr Energ Combust Sci 24:197–219CrossRefGoogle Scholar
  30. 30.
    Wooldridge MS (1998) Gas-phase combustion synthesis of particles. Prog Energ Combust Sci 24:63–87CrossRefGoogle Scholar
  31. 31.
    Boulos MI, Fauchais P, Pfender E (1994) Thermal plasmas—fundamentals and applications. Plenum Press, New York. ISBN 0-306-44607-3Google Scholar
  32. 32.
    Chen FF (1974) Introduction to plasma physics. Plenum Press, New YorkGoogle Scholar
  33. 33.
    Bogaerts A, Neyts E, Gijbels R, van der Mullen J (2002) Gas discharge plasmas and their applications. Spectrochimica Acta B 57:609–658CrossRefGoogle Scholar
  34. 34.
    Ogumi Z, Uchimoto Y, Takehara Z-I (1995) Electrochemistry using plasma. Adv Mater 7(3):323–325. doi: 10.1002/adma.19950070318 CrossRefGoogle Scholar
  35. 35.
    Gubkin A (1887) Reduced matrix interferences compared to flames. J Ann Phys Chem 32:114–115CrossRefGoogle Scholar
  36. 36.
    Wang X-F, Jing-Juan Xu, Chen HY (2008) Dendritic CdO nanomaterials prepared by electrochemical deposition and their electrogenerated chemiluminescence behaviors in aqueous systems. J Phys Chem C 112(18):7151–7157. doi: 10.1021/jp711093z CrossRefGoogle Scholar
  37. 37.
    Vennekamp M, Janek J (2005) Control of the surface morphology of solid electrolyte films during field driven growth in a reactive plasma. Phys Chem Chem Phys 7:666–677CrossRefGoogle Scholar
  38. 38.
    Vennekamp M, Janek J (2001) Plasma electrochemical growth of ion-conducting AgBr and AgCl Solid State Ionics. 141–142, 71–80Google Scholar
  39. 39.
    He P, Liu H, Li Z, Liu Y, Xiudong Xu, Li J (2004) Electrochemical deposition of silver in room temperature ionic liquids and its surface enhanced Raman scattering effect. Langmuir 20(23):10260–10267. doi: 10.1021/la0484801 CrossRefGoogle Scholar
  40. 40.
    Zein El Abedin S, Endres F (2009) Electrodeposition of nanocrystaline silver films and nanowires from the ionic liquid 1 ethyl 3 methylimidazolium trifluromethylsulfonate. Electrochim Acta 54:5673–5677CrossRefGoogle Scholar
  41. 41.
    Zein El Abedin S, Saad AY, Farag HK, Borisenko N, Liu QX, Endres F (2007) Electrodepostion of selenium, indium and copper in air and water stable ionic liquid at variable temperatures. Electrochim Acta 52:2746–2754CrossRefGoogle Scholar
  42. 42.
    Zein El Abedin S, Polleth M, Meiss SA, Janek J, Endres F (2007) Ionic liquid as green electrolytes for the electrodeposition of nanomaterials. Green Chem 9:549–553CrossRefGoogle Scholar
  43. 43.
    Endres F (2002) Ionic liquids: solvents for the electrodeposition of metals and semiconductors. Chem Phys Chem 3:144–154CrossRefGoogle Scholar
  44. 44.
    Yan ZC, Li C, Lin WH (2006) Experimental study of plasma under-liquid electrolysis in hydrogen generation. Chin J Process Eng 6(3):396–401Google Scholar
  45. 45.
    Bruggeman P, Schram D, González MÁ, Rego R, Kong MG, Leys C (2009) Characterization of a direct dc-excited discharge in water by optical emission spectroscopy. Plasma Sourc Sci Tech 18(025017):13Google Scholar
  46. 46.
    Gao J, Wang A, Fu Y, Wu J, Ma D, Guo X, Li Y, Yang W (2008) Analysis of energetic species caused by contact glow discharge electrolysis in aqueous solution. Plasma Sci Tech 10:1. doi: 10.1088/1009-0630/10/1/07 CrossRefGoogle Scholar
  47. 47.
    Gao J (2006) A novel technique for waste water treatment by contact glow discharge electrolysis. Pak J Biol Sci 9(2):323–329CrossRefGoogle Scholar
  48. 48.
    Hicking A, Ingram MD (1964) Contact glow-discharge electrolysis. Trans Faraday Soc 60:783–793CrossRefGoogle Scholar
  49. 49.
    Susanta KSG, Rajeshwar S, Ashok KSA (1998) Study on the origin of non-faradaic behavior of anodic contact glow discharge electrolysis. J Electrochem Soc 145(7):2209–2213CrossRefGoogle Scholar
  50. 50.
    Polyakov OV, Badalyan AM, Bakhturova LF (2003) The yields of radical products in water decomposition under discharges with electrolytic electrodes. High Energy Chem 37(5):322–327CrossRefGoogle Scholar
  51. 51.
    Polyakov OV, Badalyan AM, Bakhturova LF (2002) The water degradation yield and spatial distribution of primary radicals in the near-discharge volume of an electrolytic cathode. High Energy Chem 36(5):280–284CrossRefGoogle Scholar
  52. 52.
    Development of electrolyte cathode glow discharge atomic emission spectroscopy for the analysis of elements at trace and ultra trace levels (2009) CCM, Hyderabad, BARC news letter, 14, 301Google Scholar
  53. 53.
    Bruggeman P, Ribezl E, Degroote J, Vierendeels J, Leys C (2008) Plasma characteristics and electrical break down between metal and water electrodes. J Optoelectron Adv Mater 10(8):1964–1967Google Scholar
  54. 54.
    Vyalykh DV, Dubinov AE, Mikheev KE, Lashmanov YuN, L’vov IL, Sadovo SA, Selemir VD (2005) Experimental study of the stability of the interface between a liquid electrolyte and the glow discharge plasma. Tech Phys 50(10):1374–1375CrossRefGoogle Scholar
  55. 55.
    Meiss SA, Rohnke M, Kienle L, Abedin Sherif Zein El, Endres F, Janek J (2007) Employing plasmas as gaseous electrodes at the free surface of ionic liquids: deposition of nanocrystalline silver particles. Chemphyschem 8:50–53. doi: 10.1002/cphc.200600582 CrossRefGoogle Scholar
  56. 56.
    Endres F, MacFarlane D, Abbott A (2008) Electrodeposition from ionic liquids. Wiley-VCH Verlag Gmbh&Co.KgaAGoogle Scholar
  57. 57.
    Poelleth M, Meiss A, Rohnke M, Kienle L, Zein El Abedin S, Endres F, Janek J (2007) Deposition of metal nanoparticles at ionic-liquid/plasma interfaces, 28th ICPIG, July 15–20, Topic number: 13Google Scholar
  58. 58.
    Brettholle M, Höfft O, Klarhöfer L, Mathes S, Maus-Friedrichs W, Zein El Abedin S, Krischok S, Janek J, Endres F (2010) Plasma electrochemistry in ionic liquids: deposition of copper nanoparticles. Phys Chem Chem Phys. doi: 10.1039/b906567a
  59. 59.
    Sergiienko R, Shibata E, Akase Z, Suwa H, Nakamura T, Shindo D (2006) Carbon encapsulated iron carbide nanoparticles synthesized in ethanol by an electric plasma discharge in an ultrasonic cavitation field. Mater Chem Phys 98:34–38CrossRefGoogle Scholar
  60. 60.
    Sergiienko R, Shibata E, Zentaro A, Shindo D, Nakamura T, Qin G (2007) Formation and characterization of graphite-encapsulated cobalt nanoparticles synthesized by electric discharge in an ultrasonic cavitation field of liquid ethanol. Acta Mater 55:3671–3680CrossRefGoogle Scholar
  61. 61.
    Burakov V, Tarasenko N, Nevar AA, Nedelko VI (2009) Spectroscopic characterization of electrical discharge plasma in liquids used for nanoparticles fabrication, X17–16.29th ICPIG, July 12–17Google Scholar
  62. 62.
    Schaper L, Graham WG, Stalder KR (2011) Vapour layer formation by electrical discharges through electrically conducting liquids—modelling and experiment. Plasma Sourc Sci Tech 20:034003. doi: 10.1088/0963-0252/20/3/034003 CrossRefGoogle Scholar
  63. 63.
    Gai K (2006) Aqueous benzoquinone degradation induced by plasma with glow discharge electrolysis. Can J Anal Sci Spectrosc Volume 51, No. 4Google Scholar
  64. 64.
    Gai K (2006) Aqueous diphenyl degradation induced by plasma with glow discharge electrolysis. J Chin Chem Soc 53:627–632Google Scholar
  65. 65.
    Harada K, Terasawa J, Suzuki S (1978) Syntheses of uracil and thymine by contact glow-discharge electrolysis. Naturwissenschaften 65(9):259CrossRefGoogle Scholar
  66. 66.
    Harada K, Suzuki S, Ishida H (1977) Syntheses of amino acids from unsaturated aliphatic carboxylic acid by contact glow discharge electrolysis, 300–31 (Japan), 18 Specialia Experientia 34/1Google Scholar
  67. 67.
    Gai K, Dong Y-J (2005) Plasma induced degradation of azobenzene in water. J Chin Chem Soc 52(273–276):273Google Scholar
  68. 68.
    Yan ZC, Li C, Lin WH (2009) Hydrogen generation by glow discharge plasma electrolysis of methanol solutions. Int J Hydrog Energy 3(4):48–55CrossRefGoogle Scholar
  69. 69.
    Paulmier T, Bell JM, Fredericks PM (2007) Deposition of nano-crystalline graphite films by cathodic plasma electrolysis. Thin Solid Films 515(5):2926–2934CrossRefGoogle Scholar
  70. 70.
    Paulmier T, Bell JM, Fredericks PM (2006) Development of a novel cathodic plasma/electrolytic deposition technique, Part 2: physicochemical analysis of the plasma discharge. Surf CoatTechnol. doi: 10.1016/j.surfcoat.2006.07.066
  71. 71.
    Sergiienko R, Shibata E, Akase Z, Suwa H, Shindo D, Nakamura T (2006) Synthesis of Fe-filled carbon nanocapsules by an electric plasma discharge in an ultrasonic cavitation field of liquid ethanol. J Mater Res 21(10):2524–2535CrossRefGoogle Scholar
  72. 72.
    Niea X, Meletis EI, Jiang JC, Leyland A, Yerokhin AL, Matthews A (2002) Abrasive wearycorrosion properties and TEM analysis of Al2O3 coatings fabricated using plasma electrolysis. Surf CoatTechnol 149:245–251CrossRefGoogle Scholar
  73. 73.
    Khan RHU, Yerokhin A, Li X, Dong H, Matthews A (2010) Surface characterisation of DC plasma electrolytic oxidation treated 6082 aluminium alloy: effect of current density and electrolyte concentration. Surf CoatTechnol. doi: 10.1016/j.surfcoat.2010.04.052
  74. 74.
    Yerokhin AL, Nie X, Leyland A, Matthews A (2000) Characterisation of oxide films produced by plasma electrolytic oxidation of a Ti6Al4V alloy. Surf CoatTechnol 130:195–206CrossRefGoogle Scholar
  75. 75.
    Chu P-J, Shu-Yuan W, Chen K-C, He J-L, Yerokhin A, Matthews A (2010) Nano-structured TiO2 films by plasma electrolytic oxidation combined with chemical and thermal post-treatments of titanium, for dye-sensitised solar cell applications. Thin Solid Films. doi: 10.1016/j.tsf.2010.06.046
  76. 76.
    Schaper L, Stalder KR, Graham WG (2011) Plasma production in electrically conducting liquids. Plasma Sources Sci Technol 20(034004):6. doi: 10.1088/0963-0252/20/3/034004 Google Scholar
  77. 77.
    Toriyabe Yu, Watanabe S, Yatsu S, Shibayama T, Mizuno T (2007) Controlled formation of metallic nanoballs during plasma electrolysis. Appl Phys Lett 91:041501CrossRefGoogle Scholar
  78. 78.
    Wüthrich R, Allagui A (2010) Building micro and nanosystems with electrochemical discharges. Electrochim Acta 55:8189–8196CrossRefGoogle Scholar
  79. 79.
    Lal A, Bleuler H, Wüthrich R (2008) Fabrication of metallic nanoparticles by electrochemical discharges. Electrochem Commun 10:488–491CrossRefGoogle Scholar
  80. 80.
    Paulmier T, Bell JM, Fredericks PM (2008) Plasma electrolytic deposition of titanium dioxide nanorods and nano-particles. J Mater Proc Tech 208:117–123CrossRefGoogle Scholar
  81. 81.
    Takai O (2008) Solution plasma processing (SPP). Pure Appl Chem 80(9):2003–2011. doi: 10.1351/pac200880092003 CrossRefGoogle Scholar
  82. 82.
    Hieda J, Saitoa N, Takai O (2008) Exotic shapes of gold nanoparticles synthesized using plasma in aqueous solution. J Vac Sci Technol, A 26(4):854–857CrossRefGoogle Scholar
  83. 83.
    Jwo C-S, Tien D-C, Teng T-P, Chang H, Tsung T-T, Liao C-Y, Lin C-H (2005) Preparation and UV characterization of TiO2 nanoparticles synthesized by SANSS. Rev Adv Mater Sci 10:283–288Google Scholar
  84. 84.
    Bruggeman P, Liu JJ, Degroote J, Kong MG, Vierendeels J, Leys C (2008) DC excited glow discharges in atmospheric pressure air in pin-to-water electrode systems. J Phys D: Appl Phys 41:215201CrossRefGoogle Scholar
  85. 85.
    Yan J-H, Du C-M, Li X-D, Sun X-D, Ni M-J, Cen K-F, Cheron B (2005) Plasma chemical degradation of phenol in solution by gas–liquid gliding arc discharge. Plasma Sourc Sci Tech 14:637–644. doi: 10.1088/0963-0252/14/4/001 CrossRefGoogle Scholar
  86. 86.
    Petr Lukes, Water treatment by pulsed streamer corona discharge, Ph.D. Thesis, Prague 2001, Institute of Chemical Technology, PragueGoogle Scholar
  87. 87.
    Chang F-C, Richmonds C, Mohan Sankaran R (2010) Microplasma-assisted growth of colloidal Ag nanoparticles for point-of use surface-enhanced Raman scattering applications. J Vac Sci Technol, A 28(4):L5–L8CrossRefGoogle Scholar
  88. 88.
    Mariotti D, Mohan Sankaran R (2010) Microplasmas for nanomaterials synthesis: a review on microplasmas. J Phys D: Appl Phys 43:323001. doi: 10.1088/0022-3727/43/32/323001 CrossRefGoogle Scholar
  89. 89.
    Richmonds C, Mohan Sankaran R (2008) Plasma-liquid electrochemistry: rapid synthesis of colloidal metal nanoparticles by microplasma reduction of aqueous cations. Appl Phys Lett 93:131501CrossRefGoogle Scholar
  90. 90.
    Sayed A, Aala A, Al-Salmana R, Al-Zoubia M, Borissenkoa N, Endresa F, Höffta O, Prowalda A, Zein El Abedin S (2011) Interfacial electrochemistry and electro deposition from some ionic liquids: in situ scanning tunneling microscopy, plasma electrochemistry, selenium and macroporous materials. Electrochim Acta. doi: 10.1016/j.electacta.2011.02.063
  91. 91.
    Xie Y-B, Liu C-J (2008) Stability of ionic liquids under the influence of glow discharge plasmas. Plasma Process Polym 5:239–245CrossRefGoogle Scholar
  92. 92.
    Hofft O, Endres F (2011) Plasma electrochemistry in ionic liquids: an alternative route to generate nanoparticles. Phys Chem Chem Phys 13:13472–13478. doi: 10.1039/c1cp20501c CrossRefGoogle Scholar
  93. 93.
    Brettholle M, Hofft O, Klarhofer L, Mathes S, Maus-Friedrichs W, Zein El Abedin S, Krischok S, Janekd J, Endres F (2010) Plasma electrochemistry in ionic liquids: deposition of copper nanoparticles. Phys Chem Chem Phys 12:1750–1755CrossRefGoogle Scholar
  94. 94.
    Bagotsky VS (2005) Fundamentals of electrochemistry, 2nd edition, John Wiley & Sons, Inc., pp 22–28Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.PG & Research Department of PhysicsKongunadu Arts and Science College, GN Mills POCoimbatoreIndia

Personalised recommendations