Determination of three analgesics in pharmaceutical and urine sample on nano poly (3, 4-ethylenedioxythiophene) modified electrode

Abstract

Three analgesics, acetaminophen, acetylsalicylic acid, and dipyrone were determined by stripping voltammetry using nanosized poly(3,4-ethylenedioxythiophene)-modified glassy carbon electrode . The cyclic voltammetric behavior of the three analgesics was studied in aqueous acid, neutral, and alkaline conditions. One well-defined oxidation peak each for acetaminophen and acetylsalicylic acid and three oxidation peaks for dipyrone were observed in the cyclic voltammograms. The influence of pH, scan rate, and concentration revealed irreversible diffusion controlled reaction. A systematic study of the experimental parameters that affect the differential pulse stripping voltammetric response was carried out. Calibration was made under maximum peak current conditions. The scanning electron microscope analysis confirmed good accumulation of the drugs on the electrode surface. The range of study for both acetaminophen, acetylsalicylic acid were 0.015–0.4 and dipyrone was 0.025–0.4 μg/ml. The lower limit of determination for both acetaminophen, acetylsalicylic acid was 0.01 μg/mL and for dipyrone was 0.02 μg/mL. The suitability of the method for the determination of the three analgesics in pharmaceutical preparations and urine samples was also ascertained.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Jin GY, Zhang YZ, Cheng WX (2006) Poly(p-aminobenzene sulfonic acid)-modified glassy carbon electrode for simultaneous detection of dopamine and ascorbic acid. Sens Actuat B 107:528–534

    Article  Google Scholar 

  2. 2.

    Chen JH, Zhang J, Zhuang Q, Zhang SB, Lin XH (2007) Electrochemical study of bergenin on a poly(4-(2-pyridylazo)-resorcinol) modified glassy carbon electrode and its determination in tablets and urine. Talanta 72:1805–1810

    Article  CAS  Google Scholar 

  3. 3.

    Patel F (1992) The fatal paracetamol dosage—how low can you go? Med Sci Law 32:303–310

    CAS  Google Scholar 

  4. 4.

    Tungkananuruk K, Tungkananuruk N, Burns DT (2005) Cyclic voltammetric determination of acetaminophen in paracetamol tablets. KMITL Sci Tech J 5:547–551

    Google Scholar 

  5. 5.

    Lavorante AF, Pires CK, Reis BF (2006) Multicommuted flow system employing pinch solenoid valves and micro-pumps. spectrophotometric determination of paracetamol in pharmaceutical formulations. J Pharm Biomed Anal 42:423–429

    Article  CAS  Google Scholar 

  6. 6.

    Zarei AR, Afkhami A, Sarlak N (2005) Simultaneous spectrophotometric determination of paracetamol and salicylamide in human serum and pharmaceutical formulations by a differential kinetic method. J AOAC Int 88:1695–1701

    CAS  Google Scholar 

  7. 7.

    Pejic N, Kolar-Anic L, Anic S, Stanisavljev D (2006) Determination of paracetamol in pure and pharmaceutical dosage forms by pulse perturbation technique. J Pharm Biomed Anal 41:610–615

    Article  CAS  Google Scholar 

  8. 8.

    El-Yazbi FA, Hammud HH, Assi SA (2007) Derivative-ratio spectrophotometric method for the determination of ternary mixture of aspirin, paracetamol and salicylic acid. Spectrochim Acta Part A 68:275–278

    Article  Google Scholar 

  9. 9.

    Silva MLS, Garcia MBQ, Lima JLFC, Barrado E (2006) Flow system with electrochemical detection for determination of paracetamol in pharmaceutical formulations. Port Electrochim Acta 24:261–271

    Article  CAS  Google Scholar 

  10. 10.

    Ozcan L, Sahin Y (2007) Determination of paracetamol based on electropolymerized-molecularly imprinted polypyrrole modified pencil graphite electrode. Sens Actuat B 127:362–369

    Article  Google Scholar 

  11. 11.

    Shahrokhian S, Asadian E (2010) Simultaneous voltammetric determination of ascorbic acid, acetaminophen and isoniazid using thionine immobilized multi-walled carbon nanotube modified carbon paste electrode. Electrochim Acta 55:3621–3627

    Article  CAS  Google Scholar 

  12. 12.

    Mazloum-Ardakani M, Beitollahi H, Kazem Amini M, Mirkhalaf F, Abdollahi-Alibeik M (2010) New strategy for simultaneous and selective voltammetric determination of norepinephrine, acetaminophen and folic acid using ZrO2 nanoparticles-modified carbon paste electrode. Sens and Actuat B 151:243–249

    Article  Google Scholar 

  13. 13.

    Ozkan SA, Uslu B, Aboul-Enein HY (2003) Analysis of pharmaceuticals and biological fluids using modern electroanalytical techniques. Crit Rev Analyt Chem 33:155–181

    Article  Google Scholar 

  14. 14.

    Goyal RN, Singh SP (2006) Voltammetric determination of paracetamol at C60-modified glassy carbon electrode. Electrochim Acta 51:3008–3012

    Article  CAS  Google Scholar 

  15. 15.

    Li M, Jing L (2007) Electrochemical behavior of acetaminophen and its detection on the PANI–MWCNTs composite modified electrode. Electrochim Acta 52:3250–3257

    Article  CAS  Google Scholar 

  16. 16.

    Wang SF, Xie F, Hu RF (2007) Carbon-coated nickel magnetic nanoparticles modified electrodes as a sensor for determination of acetaminophen. Sens Actuat B 123:495–500

    Article  Google Scholar 

  17. 17.

    Ibrahim H, Boyer A, Bouajila J, Couderc F, Nepveu F (2007) Determination of non-steroidal anti-inflammatory drugs in pharmaceuticals and human serum by dual-mode gradient HPLC and fluorescence detection. J Chromatogr B 857:59–66

    Article  CAS  Google Scholar 

  18. 18.

    Alves L, Poppi J (2009) Simultaneous determination of acetylsalicylic acid, paracetamol and caffeine using solid-phase molecular fluorescence and parallel factor analysis. Anal Chim Acta 642:212–216

    Article  CAS  Google Scholar 

  19. 19.

    Trinder P (1954) Rapid determination of salicylate in biological fluids. Biochem J 57:301–303

    CAS  Google Scholar 

  20. 20.

    Akay C, Degim T, Sayal A, Aydin A, Ozkan Y, Gul H (2008) Rapid and simultaneous determination of acetylsalicylic acid, paracetamol, and their degradation and toxic impurity products by HPLC in pharmaceutical dosage forms. Turk J Med Sci 38:167–173

    CAS  Google Scholar 

  21. 21.

    De Beer TRM, Baeyens WRG, Vander Heyden Y, Remon JP, Vervaet C, Verpoort F (2007) Influence of particle size on the quantitative determination of salicylic acid in a pharmaceutical ointment using FT-Raman spectroscopy. Eur J Pharm Sci 30:229–235

    Article  Google Scholar 

  22. 22.

    Martos NR, Diaz AM, Vallvey LFC (2001) Spectrofluorimetric determination of acetylsalicylic acid and codeine mixtures in pharmaceuticals. Anal Lett 34:579–595

    Article  CAS  Google Scholar 

  23. 23.

    Karim MM, Jeon CW, Lee HS, Alam SM, Lee SH, Choi JH, Jin SO, Das AK (2006) Simultaneous determination of acetylsalicylic acid and caffeine in pharmaceutical formulation by first derivative synchronous fluorimetric method. J Fluoresc Sep 16:713–721

    Article  CAS  Google Scholar 

  24. 24.

    Matias FAA, Vila MMDC, Tubino MJ (2004) Quantitative reflectance spot test for the determination of acetylsalicylic acid in pharmaceutical preparations. J Braz Chem Soc 15:327–330

    Article  CAS  Google Scholar 

  25. 25.

    Campanella L, Gregori E, Tomassetti M (2006) Salicylic acid determination in cow urine and drugs using a bienzymatic sensor. J Pharm Biomed Anal 42:94–99

    Article  CAS  Google Scholar 

  26. 26.

    Torriero AAJ, Luco JM, Sereno L, Raba J (2004) Voltammetric determination of salicylic acid in pharmaceuticals formulations of acetylsalicylic acid. Talanta 62:247–254

    Article  CAS  Google Scholar 

  27. 27.

    Jones SL (1996) Dipyrone into the nucleus raphe magnus inhibits the rat nociceptive tail-flick reflex. Eur J Pharmacol 318:37–40

    Article  CAS  Google Scholar 

  28. 28.

    Matos RC, Angnes L, Araujo MCU, Saldanha TCB (2000) Modified microelectrodes and multivariate calibration for flow injection amperometric simultaneous determination of ascorbic acid, dopamine, epinephrine and dipyrone. Analyst 125:2011–2015

    Article  CAS  Google Scholar 

  29. 29.

    Medeiros EP, Castro SL, Formiga FM, Santos SRB, Araujo MCU, Nascimento VBA (2004) Flow injection method for biamperometric determination of dipyrone in pharmaceuticals. Microchem J 78:91–96

    Article  CAS  Google Scholar 

  30. 30.

    Senyuva HZ, Aksahin I, Ozcan S, Veli Kabasakal B (2005) Rapid, simple and accurate liquid chromatography–diode array detection validated method for the determination of dipyrone in solid and liquid dosage forms. Anal Chim Acta 547:73–77

    Article  CAS  Google Scholar 

  31. 31.

    Weinert PL, Pezza L, Pezza HR (2007) A Simplified reflectometric method for the rapid determination of dipyrone in pharmaceutical formulations. J Braz Chem Soc 18:846–854

    Article  CAS  Google Scholar 

  32. 32.

    Penney L, Bergeron C, Wijewickreme A (2005) Simultaneous determination of residues of dipyrone and its major metabolites in milk, bovine muscle, and porcine muscle by liquid chromatography/mass spectrometry. J AOAC Int 88:496–504

    CAS  Google Scholar 

  33. 33.

    Teixeira MFS, Marcolino-Junior LH, Fatibello-Filho O, Moraes FC, Nunes RS (2009) Determination of Analgesics (dipyrone and acetaminophen) in pharmaceutical preparations by cyclic voltammetry at a copper(II) hexacyanoferrate(III) Modified carbon paste electrode. Curr Anal Chem 5:303–310

    Article  CAS  Google Scholar 

  34. 34.

    Vasantha VS, Chen S-M (2005) Electrochemical synthesis and application of PEDOT/ferrocyanide film modified glassy carbon electrode. Electrochem Acta 51(2):347–355

    Article  CAS  Google Scholar 

  35. 35.

    Manisankar P, Vedhi C, Gurumallesh SG, Prabu H (2007) Influence of surfactants on the electrochromic behaviour of poly (3,4-ethylenedioxythiophene). J Appl Polym Sci 104:3285–3291

    Article  CAS  Google Scholar 

  36. 36.

    Ni Y, Wang Y, Kokot S (2004) Differential pulse stripping voltammetric determination of paracetamol and phenobarbital in pharmaceuticals assisted by chemometrics. Anal Lett 37:3219–3235

    Article  CAS  Google Scholar 

  37. 37.

    Pirola R, Bareggi SR, De Benedittis G (1998) Determination of acetylsalicylic acid and salicylic acid in skin and plasma by high-performance liquid chromatography. J Chromatogr A 705:309–315

    CAS  Google Scholar 

  38. 38.

    Bouhsain Z, Garrigues S, De la Guardia M (1996) Simultaneous stopped-flow determination of paracetamol, acetylsalicylic acid and caffeine in pharmaceutical formulations by Fourier transform infrared spectrometry with partial least-squares data treatment. Analyst 121:635–638

    Article  CAS  Google Scholar 

  39. 39.

    Qi ML, Wang P, Leng YX, Gu JL, Fu RN (2002) Simple HPLC method for simultaneous determination of acetaminophen, caffeine and chlorpheniramine maleate in tablet formulations. Chromatographia 56:295–298

    Article  CAS  Google Scholar 

  40. 40.

    Andres C, Soledad C, Mercedes G, Miguel V (2000) Continuous flow spectrophotometric determination of paracetamol in pharmaceticals following continuous microwave assisted alkaline hydrolysis. Talanta 53:417–423

    Article  Google Scholar 

  41. 41.

    Felix FS, Brett CMA, Angnes L (2007) Carbon film resistor electrode for amperometric determination of acetaminophen in pharmaceutical formulations. J Pharm Biomed Anal 43:1622–1627

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gopalakrishnan Gopu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 27 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gopu, G., Muralidharan, B., Vedhi, C. et al. Determination of three analgesics in pharmaceutical and urine sample on nano poly (3, 4-ethylenedioxythiophene) modified electrode. Ionics 18, 231–239 (2012). https://doi.org/10.1007/s11581-011-0619-2

Download citation

Keywords

  • Acetaminophen
  • Acetylsalicylic acid
  • Dipyrone
  • Nano Poly (3,4-ethylenedioxythiophene)
  • Cyclic voltammetry
  • Stripping voltammetry