Skip to main content

Advertisement

Log in

Recent developments in the doping of LiNi0.5Mn1.5O4 cathode material for 5 V lithium-ion batteries

  • Review
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

LiMn2O4 has been considered a promising cathode material for lithium-ion batteries in electric vehicles. However, there are still a number of problems of severe capacity fading before any materials modifications. Among all doped LiMn2O4, spinel LiNi0.5Mn1.5O4 material is seen as a potential cathode material for use in electric vehicles and energy storage systems in the future because of its high working potential (4.7 V), high energy density (the energy density of LiNi0.5Mn1.5O4 is 20% higher than that of LiCoO2), acceptable stability, and good cycling performance. In the presented paper, the structure and electrochemical performance of doped LiNi0.5Mn1.5O4 are reviewed. The rate capability, rate performance and cyclic life of various doped LiNi0.5Mn1.5O4 materials are described. This review also focuses on the present status of doped LiNi0.5Mn1.5O4, then on its near future developments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Amatucci G, Tarascon J-M (2002) J Electrochem Soc 149:K31

    Article  CAS  Google Scholar 

  2. Lu D, Li W, Zuo X, Yuan Z, Huang Q (2007) J Phys Chem C 111:12067

    Article  CAS  Google Scholar 

  3. Hasegawa A, Yoshizawa K, Yamabe T (2001) J Electrochem Soc 148:A701

    Article  CAS  Google Scholar 

  4. Yi TF, Zhu YR, Zhu XD, Shu J, Yue CB, Zhou AN (2009) Ionics 15:779

    Article  CAS  Google Scholar 

  5. Ma X, Kang B, Ceder G (2010) J Electrochem Soc 157:A925–A931

    Article  CAS  Google Scholar 

  6. Takahashi K, Saitoh M, Sano M, Fujita M, Kifune K (2004) J Electrochem Soc 151:A173–A177

    Article  CAS  Google Scholar 

  7. Amine K, Tukamoto H, Yasuda H, Fujita Y (1996) J Electrochem Soc 143:1607–1613

    Article  CAS  Google Scholar 

  8. Amine K, Tukamoto H, Yasuda H, Fujita Y, Extended Abstracts 95–2. In: Electrochemical Society Fall Meeting 1995, Chicago, Abstract no. 70. p. 114

  9. Yi TF, Zhu YR, Zhu RS (2008) Solid State Ionics 179:2132

    Article  CAS  Google Scholar 

  10. Wu HM, Tu JP, Yuan YF, Li Y, Zhao XB, Cao GS (2005) Electrochim Acta 50:4104

    Article  CAS  Google Scholar 

  11. Idemoto Y, Narai H, Koura N (2003) J Power Sources 119–121:125

    Article  Google Scholar 

  12. Julien CM, Gendron F, Amdouni A, Massot M (2006) Mater Sci Eng B 130:41

    Article  CAS  Google Scholar 

  13. Kim JH, Myung ST, Yoon CS, Kang SG, Sun YK (2004) Chem Mater 16:906

    Article  CAS  Google Scholar 

  14. Yang T, Sun K, Lei Z, Zhang N, Lang Y (2010) J Alloys Compd 502:215–219

    Article  CAS  Google Scholar 

  15. Kunduraci M, Al-Sharab JF, Amatucci GG (2006) Chem Mater 18:3585

    Article  CAS  Google Scholar 

  16. Alcantara R, Jaraba M, Lavela P, Trado JL, Zhecheva E, Stoyanova R (2004) Chem Mater 16:1573

    Article  CAS  Google Scholar 

  17. Chen CH, Vaughey JT, Jansen AN, Dees DW, Kahaian AJ, Goacher T, Thackeray MM (2001) J Electrochem Soc 148:A102–A104

    Article  CAS  Google Scholar 

  18. Ooms FGB, Kelder EM, Schoonman J, Wagemaker M (2002) Mulder FM Solid State Ionics 152–153:143–153

    Article  Google Scholar 

  19. Locati C, Lafont U, Simonin L, Ooms F, Kelder EM (2007) J Power Sources 174:847–851

    Article  CAS  Google Scholar 

  20. Lafont U, Locati C, Borghols WJH, Łasińska A, Dygas J, Chadwick AV, Kelder EM (2009) J Power Sources 189:179–184

    Article  CAS  Google Scholar 

  21. Zhang N, Yang T, Lang Y, Sun K (2011) J Alloys Compd 509:3783–3786

    Article  CAS  Google Scholar 

  22. Robertson AD Jr, Howard WF (1997) J Electrochem Soc 144:3505

    Article  CAS  Google Scholar 

  23. Sigala C, Verbaere A, Mansot JL, Guyomard D, Piffard Y, Tournoux M (1997) J Solid State Chem 132:372

    Article  CAS  Google Scholar 

  24. Liu G, Xie H, Liu L, Kang X, Tian Y, Zhai Y (2007) Mater Res Bull 42:1955

    Article  CAS  Google Scholar 

  25. Liu GQ, Wen L, Liu GY, Tian YW (2010) J Alloys Compd 501:233

    Article  CAS  Google Scholar 

  26. Arunkumar TA, Manthiram A (2005) Electrochim Acta 50:5568

    Article  CAS  Google Scholar 

  27. Yi TF, Li CY, Zhu YR, Shu J, Zhu RS (2009) J Solid State Electrochem 13:913

    Article  CAS  Google Scholar 

  28. Aklalouch M, Amarilla JM, Rojas RM, Saadoune I, Rojo JM (2010) Electrochem Commun 12:548–552

    Article  CAS  Google Scholar 

  29. Park SB, Eom WS, Cho WI, Jang H (2006) J Power Sources 159:679

    Article  CAS  Google Scholar 

  30. Aklalouch M, Amarilla JM, Rojas RM, Saadoune I, Rojo JM (2008) J Power Sources 185:501–511

    Article  CAS  Google Scholar 

  31. Oha SW, Myung S-T, Kang HB, Sun Y-K (2009) J Power Sources 189:752–756

    Article  Google Scholar 

  32. Li D, Ito A, Kobayakawa K, Noguchi H, Sato Y (2006) J Power Sources 161:1241–1246

    Article  CAS  Google Scholar 

  33. Liu J, Manthiram A (2009) Chem Mater 21:1695–1707

    Article  CAS  Google Scholar 

  34. Arunkumar TA, Manthiram A (2005) Electrochem Solid-State Lett 8:A403–A405

    Article  CAS  Google Scholar 

  35. Ito A, Li D, Lee Y, Kobayakawa K, Sato Y (2008) J Power Sources 185:1429–1433

    Article  CAS  Google Scholar 

  36. Vicente CP, Lloris JM, Tirado JL (2004) Electrochim Acta 49:1963–1967

    Article  CAS  Google Scholar 

  37. Liu J, Manthiram A (2009) J Phys Chem C 113:15073–15079

    Article  CAS  Google Scholar 

  38. Alcantara R, Jaraba M, Lavela P, Lloris JM, Vicente CP, Tiradoz JL (2005) J Electrochem Soc 152:A13–A18

    Article  CAS  Google Scholar 

  39. Fey GT-K, Lu C-Z, Kumar TP (2003) J Power Sources 115:332–345

    Article  CAS  Google Scholar 

  40. Léon B, Lloris JM, Vicente CP, Tirado JL (2006) Electrochem Solid State Lett 9:A96–A100

    Article  Google Scholar 

  41. Kim J-H, Myung S-T, Yoon CS, Oh I-H, Sun Y-K (2004) J Electrochem Soc 151:A1911–A1918

    Article  CAS  Google Scholar 

  42. Noguchi T, Yamazaki I, Numata T, Shirakata M (2007) J Power Sources 174:359–365

    Article  CAS  Google Scholar 

  43. Liu GQ, Yuan WS, Liu GY, Tian YW (2009) J Alloys Compd 484:567–569

    Article  CAS  Google Scholar 

  44. Alcántara R, Jaraba M, Lavela P, Tirado JL, Biensan Ph, De Guibert A, Jordy C, Peres JP (2003) Chem Mater 15:2376–2382

    Article  Google Scholar 

  45. Oh SH, Chung KY, Jeon SH, Kim CS, Cho WI, Cho BW (2009) J Alloys Compd 469:244–250

    Article  CAS  Google Scholar 

  46. Wang H, Xia H, Lai MO, Lu L (2009) Electrochem Commun 11:1539–1542

    Article  CAS  Google Scholar 

  47. Oh S-W, Park S-H, Kim J-H, Bae YC, Sun Y-K (2006) J Power Sources 157:464–470

    Article  CAS  Google Scholar 

  48. Kim G-H, Kim J-H, Yoon CS, Myung S-T, Sun Y-K (2005) J Electrochem Soc 152:1707

    Article  Google Scholar 

  49. Xu XX, Yang J, Wang YQ, NuLi YN, Wang JL (2007) J Power Sources 174:1113–1116

    Article  CAS  Google Scholar 

  50. Du G, NuLi Y, Yang J, Wang J (2008) Mater Res Bull 43:3607–3613

    Article  CAS  Google Scholar 

  51. Sun Y-K, Oh SW, Yoon CS, Bang HJ, Prakash J (2006) J Power Sources 161:19–26

    Article  CAS  Google Scholar 

  52. Lu W, Jansen A, Dees D, Nelson P, Veselka N, Henriksen R (2011) J Power Sources 196:1537–1540

    Article  CAS  Google Scholar 

  53. Xia H, Meng YS, Lu L, Ceder G (2007) J Electrochem Soc 154:A737

    Article  CAS  Google Scholar 

  54. Santhanam R, Rambabu B (2010) J Power Sources 195:5442–5451

    Article  CAS  Google Scholar 

  55. Yang L, Ravdel B, Luchta BL (2010) Electrochem Solid-State Lett 13:A95–A97

    Article  CAS  Google Scholar 

  56. Yi T-F, Jiang L-J, Shu J, Yue C-B, Zhu R-S, Qiao H-B (2010) J Phys Chem Solids 71:1236–1242

    Article  CAS  Google Scholar 

  57. Reale P, Panero S, Scrosati B (2005) J Electrochem Soc 152:A1949–A1954

    Article  CAS  Google Scholar 

  58. Hassoun J, Reale P, Panero S, Scrosati B, Wachtler M, Fleischhammer M, Kasper M, Wohlfahrt-Mehrens M (2010) Electrochim Acta 55:4194–4200

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (no. 50902001), the Key project of Scientific Research Foundation sponsored by Education Department of Anhui Province, China (no. KJ2010A045), and the Foundation for Young Talents in College of Anhui Province, China (no. 2010SQRL033ZD).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ting-Feng Yi or Ming-Fu Ye.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yi, TF., Xie, Y., Ye, MF. et al. Recent developments in the doping of LiNi0.5Mn1.5O4 cathode material for 5 V lithium-ion batteries. Ionics 17, 383–389 (2011). https://doi.org/10.1007/s11581-011-0550-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-011-0550-6

Keywords

Navigation