Skip to main content

Advertisement

Log in

Kinetic study on LiFePO4-positive electrode material of lithium-ion battery

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

LiFePO4-positive electrode material was successfully synthesized by a solid-state method, and the effect of storage temperatures on kinetics of lithium-ion insertion for LiFePO4-positive electrode material was investigated by electrochemical impedance spectroscopy. The charge-transfer resistance of LiFePO4 electrode decreases with increasing the storage temperatures. This suggests that it has a high electrochemical activity at high temperature. The diffusion coefficient of lithium ion is greatly increased with increasing the storage temperatures, indicating that the kinetics of Li+ and electron transfer into the electrodes were much fast at high storage temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Thakeray MM, David WIF, Bruce PG, Goodenough JB (1983) Mater Res Bull 18:461

    Article  Google Scholar 

  2. Yi T-F, Zhu Y-R, Zhu X-D, Shu J, Yue C-B, Zhou A-N (2009) Ionics 15:779

    Article  CAS  Google Scholar 

  3. Ohzuku T, Kitagawa M, Hirai T (1990) J Electrochem Soc 137:769–775

    Article  CAS  Google Scholar 

  4. Xia Y, Sakai T, Fujieda T, Yang XQ, Sun X, Mcbreen J, Yoshio M (2001) J Electrochem Soc 148:A723–A729

    Article  CAS  Google Scholar 

  5. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) J Electrochem Soc 144:1188

    Article  CAS  Google Scholar 

  6. Chung SY, Bloking JT, Chiang YT (2002) Nat Mater 1:123

    Article  CAS  Google Scholar 

  7. Zhang D, Yu X, Wang Y, Cai R, Shao Z, Liao X-Z, Ma Z-F (2009) J Electrochem Soc 156:A802–A808

    Article  CAS  Google Scholar 

  8. Hong J, Wang C, Dudney NJ, Lance MJ (2007) J Electrochem Soc 154:A805–A809

    Article  CAS  Google Scholar 

  9. Beninati S, Damen L, Mastragostino M (2008) J Power Sources 180:875

    Article  CAS  Google Scholar 

  10. Liu Y, Cao C, Li J (2010) Electrochim Acta 55:3921–3926

    Article  CAS  Google Scholar 

  11. Choi D, Kumta P (2007) J Power Sources 163:1064

    Article  CAS  Google Scholar 

  12. Wang L, Liang GC, Ou XQ, Zhi XK, Zhang JP, Cui JY (2009) J Power Sources 189:423

    Article  CAS  Google Scholar 

  13. Dokko K, Koizumi S, Sharaishi K, Kanamura K (2007) J Power Sources 165:656

    Article  CAS  Google Scholar 

  14. Atnold G, Garche J, Hemmer R, Strobele S, Vogler C, Wohlfahrt-Mehrens M (2003) J Power Sources 119:247

    Article  Google Scholar 

  15. Wang LN, Zhang ZG, Zhang KL (2007) J Power Sources 167:200

    Article  CAS  Google Scholar 

  16. Veluchamy A, Ikuta H, Wakihara M (2001) Solid State Ionics 143:161–171

    Article  CAS  Google Scholar 

  17. Park M, Zhang X, Chung M, Less G (2010) B, Sastry AM. J Power Sources 195:7904–7929

    Article  CAS  Google Scholar 

  18. Dokko K, Mohamedi M, Fujita Y, Itoh T, Nishizawa M, Umeda M, Uchida I (2001) J Electrochem Soc 148:A422–A426

    Article  CAS  Google Scholar 

  19. Cho J, Jung HS, Park YC, Kim GB, Lim HS (2000) J Electrochem Soc 147:15–20

    Article  CAS  Google Scholar 

  20. Montoro LA, Rosolen JM (2004) Electrochim Acta 49:3243–3249

    Article  CAS  Google Scholar 

  21. Jang YI, Neudecker BJ, Dudney NJ (2001) Electrochem Solid State Lett 4:A74–A77

    Article  CAS  Google Scholar 

  22. Tang X-C, Li L-X, Lai Q-L, Song X-W, Jiang L-H (2009) Electrochim Acta 54:2329–2334

    Article  CAS  Google Scholar 

  23. Tang X-C, Song X-W, Shen P-Z, Jia D-Z (2005) Electrochim Acta 50:5581–5587

    Article  CAS  Google Scholar 

  24. Tang A, Wang X, Xu G, Zhou Z, Nie H (2009) Mater Lett 63:1439–1441

    Article  CAS  Google Scholar 

  25. Xia H, Lu L, Ceder G (2006) J Power Sources 159:1422–1427

    Article  CAS  Google Scholar 

  26. Lai C, Xu Q, Ge H, Zhou G, Xie J (2008) Solid State Ionics 179:1736–1739

    Article  CAS  Google Scholar 

  27. Shaju KM, Subba RGV, Chowdari BVR (2003) J Mater Chem 13:106

    Article  CAS  Google Scholar 

  28. Gao F, Tang Z (2008) Electrochim Acta 53:5071–5075

    Article  CAS  Google Scholar 

  29. Shin HC, Cho WI, Jang H (2006) Electrochim Acta 52:1472–1476

    Article  CAS  Google Scholar 

  30. Liu H, Li C, Zhang HP, Fu LJ, Wu YP, Wu HQ (2006) J Power Sources 159:717–720

    Article  CAS  Google Scholar 

  31. Chen Y-H, Tang Z-Y, He Y-B (2007) J Inorg Mater 22:442

    Google Scholar 

  32. Liu GQ, Kuo HT, Liu RS, Shen CH, Shy DS, Xing XK, Chen JM (2010) J Alloys Compd 496:512

    Article  CAS  Google Scholar 

  33. Cao Q, Zhang HP, Wang GJ, Xia Q, Wu YP, Wu HQ (2007) Electrochem Commun 9:1228

    Article  CAS  Google Scholar 

  34. Amine K, Liu J, Belharouak I (2005) Electrochem Commun 7:669–673

    Article  CAS  Google Scholar 

  35. Fey GTK, Lu CZ, Kumar TP (2003) J Power Sources 115:332

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (no. 50902001), the Key project of Scientific Research Foundation sponsored by Education Department of Anhui Province, China (no. KJ2010A045), and the Foundation for Young Talents in College of Anhui Province, China (no. 2010SQRL033ZD).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Shu or Ting-Feng Yi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, YR., Xie, Y., Zhu, RS. et al. Kinetic study on LiFePO4-positive electrode material of lithium-ion battery. Ionics 17, 437–441 (2011). https://doi.org/10.1007/s11581-011-0523-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-011-0523-9

Keywords

Navigation