Skip to main content

Electrical transport study of potato starch-based electrolyte system

Abstract

A biopolymer electrolyte system having conductivity ∼1.3 × 10−4 S cm−1 has been prepared using potato starch, NaI, glutaraldehyde and poly(ethylene glycol) (PEG; molecular weight = 300). High ionic transference numbers (∼0.99) of the material confirmed its electrolytic behaviour. Conductivity and dielectric behaviour as a function of frequency has been studied. Conductivity follows ‘universal power law’ (σ = σ 0 +  n) with exponent ‘n’ varying from 0.94 to 1.18. Cross-linking and plasticization increases long pathways motion of charge carriers, comparable to sample dimension. Humidity-independent behaviour (up to 80% relative humidity), of impedance and water intake by the system, indicates the system’s potentiality as a promising candidate for humidity immune device fabrication. The addition of PEG has a twofold effect on the material’s conductivity. It not only increases conductivity but also improves the material’s immunity towards humid atmosphere.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Fenton DE, Parker JM, Wright PV (1973) Polymer 14:589

    Article  CAS  Google Scholar 

  2. Wright PV (1975) Br Polym J 7:319

    Article  CAS  Google Scholar 

  3. Feuillade G, Perche P (1975) J Appl Electrochem 5:63

    Article  CAS  Google Scholar 

  4. Li G, Li Z, Zhang P, Zhang H, Wu Y (2008) Pure Appl Chem 80:2553

    Article  CAS  Google Scholar 

  5. Srivastava N, Tiwari T (2009) e-Polymers 146

  6. Armand M (1994) Solid State Ionics 69:309

    Article  CAS  Google Scholar 

  7. Maurya KK, Srivastava N, Hashmi SA, Chandra S (1992) J Mater Sci 27:6357

    Article  CAS  Google Scholar 

  8. Cho CG et al (2008) J Membr Sci 308:96

    Article  CAS  Google Scholar 

  9. Quio J et al (2007) Electrochem Commun 9:1945

    Article  Google Scholar 

  10. Rajendran S (2008) J Membr Sci 315:67

    Article  CAS  Google Scholar 

  11. Kang X, Wang J, Tang Z, Wu H, Lin Y (2009) Talanta 78:120

    Article  CAS  Google Scholar 

  12. Jiang Hui-Jun, Zhao Y, Yang H, Akins DL (2009) Mater Chem Phys 114:879

    Article  CAS  Google Scholar 

  13. Zhang Y, Zheng J (2008) Electrochim Acta 54:749

    Article  CAS  Google Scholar 

  14. Pradhan SS, Sarkar A (2009) Mater Sci Eng, C 29:1790

    Article  CAS  Google Scholar 

  15. Mallick H, Sarkar A (2006) J Non-Cryst Solids 352:795

    Article  Google Scholar 

  16. Wu Y, Geng F, Peter R, Chang Yu J, Ying XM (2009) Carbohydr Polym 76:299

    Article  CAS  Google Scholar 

  17. Vieira D, Avellaneda C, Pawlicka A (2007) Electrochimica Acta 53:1404

    Article  CAS  Google Scholar 

  18. West K, Zachau-Christiansen B, Jacobsen T, Skaarup S (1989) J Power Sources 26:341

    Article  CAS  Google Scholar 

  19. Sreekanth T, Reddy MJ, Ramalingaiah S, Subba Rao UV (1999) J Power Sources 79:105

    Article  CAS  Google Scholar 

  20. Kim TB, Jung WH, Ryu HS, Kim KW, Ahn JH, Cho KK, Cho GB, Nam TH, Ahn IS, Ahn HJ (2008) J Alloy Comp 449:304

    Article  CAS  Google Scholar 

  21. Gould P (2007) Mater Today 10:17

    Google Scholar 

  22. Subba Reddy Ch V, Han Xia, Zhu Quan-Yao, Mai Li-Qiang, Chen Wen (2006) Eur Polym J 42:3114

    Article  Google Scholar 

  23. Bhide A, Hariharan K (2006) J Power Sources 159:1450

    Article  CAS  Google Scholar 

  24. Kim JS, Ahn HJ, Ryu HS, Kim DJ, Cho GB, Kim KW, Nam TH, Ahn JH (2008) J Power Sources 178:852

    Article  CAS  Google Scholar 

  25. Taiguang R. Jow (1992) Rechargeable sodium alloy anode. United States patent no. 5,168,020

  26. Chatakanonda P, Dickinson LC, Chinachoti P (2003) J Agric Food Chem 51:7445

    Article  CAS  Google Scholar 

  27. Topgaard D, Söderman O (2002) Prog Colloid Polym Sci 120:47

    Article  CAS  Google Scholar 

  28. Tang HR, Godward J, Hills B (2000) Carbohydr Polym 43:375

    Article  CAS  Google Scholar 

  29. Jonscher AK (1977) Nature 267:673

    Article  CAS  Google Scholar 

  30. Satyanarayana N, Patcheammalle R, Muralidharan P, Venkateswarlu M, Rambabu B (2000) Solid State Ionics 136&137:1097

    Article  Google Scholar 

  31. Tahlawy KE, Venditti RA, Pawlak JJ (2007) Carbohydr Polym 67:319

    Article  Google Scholar 

  32. Ramaraj B (2007) J Appl Polym Sci 103:909

    Article  CAS  Google Scholar 

  33. Tiwari T, Pandey K, Srivastava PC, Srivastava N (2011) J Appl Polymer Sci (in press)

  34. Wagner A, Kliem H (2002) J Appl Phys 91:6638

    Article  CAS  Google Scholar 

  35. Mauritz KA (1989) Macromolecules 22:4483

    Article  CAS  Google Scholar 

  36. Papathanassiou AN, Sakellis I, Grammatikakis J (2007) Appl Phys Lett 91:122911

    Article  Google Scholar 

  37. Barbara GO (2003) Appl Clay Sci 22:251

    Article  Google Scholar 

  38. Argun AA, Ashcraft JN, Herring MK, Lee DKY, Allcock HR, Hammond PT (2010) Chem Mater 22:226

    Article  CAS  Google Scholar 

  39. Cao Na, Yang X, Fu Y (2009) Food Hydrocolloids 23:729

    Article  CAS  Google Scholar 

  40. Bozdemir OA, Tutas M (2003) TUrk J Chem 27:773–782

    CAS  Google Scholar 

Download references

Acknowledgment

DST, New Delhi is acknowledged for financial support to ‘Development of sodium ion conducting—electrochemical application’ (DST reference no. SR/S2/CMP0065/2007 dated 8 April 2008). Instruments of the project are used in the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neelam Srivastava.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tiwari, T., Srivastava, N. & Srivastava, P. Electrical transport study of potato starch-based electrolyte system. Ionics 17, 353–360 (2011). https://doi.org/10.1007/s11581-010-0516-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-010-0516-0

Keywords

  • Dielectric permittivity and loss
  • Solid polymer electrolyte
  • Cross-linker
  • Plasticizer
  • Biopolymer
  • Humidity dependence of impedances
  • Universal power law