, Volume 16, Issue 4, pp 297–303 | Cite as

Effect of ionic polarizability on oxygen diffusion in δ-Bi2O3 from atomistic simulation

  • Dilpuneet S. Aidhy
  • Susan B. Sinnott
  • Eric D. Wachsman
  • Simon R. Phillpot
Original Paper


The effect of polarizability of cation dopants on oxygen diffusion in δ-Bi2O3 is determined using molecular-dynamics simulation in which the polarizability of the ions is treated within the shell model. It is found that the magnitude of the oxygen polarizability has no affect on diffusion. However, the high cation polarizability, associated with the lone pair of electrons in Bi, is found to be the key to achieving sustained oxygen diffusion. Consistent with earlier experimental results, the oxygen diffusion path is found to be between oxygen equilibrium sites, which are displaced from the 8c oxygen sites of the fluorite lattice.


Bismuth oxide Diffusion Ionic conductivities Modeling Fluorites 


  1. 1.
    Sammes N, Tompsett GA, Näfe H, Aldinger F (1999) Journal of European Ceramics Society 19:1901Google Scholar
  2. 2.
    Aurivillius B, Sillen LG (1945) Nature 155:305CrossRefGoogle Scholar
  3. 3.
    Rao CNR, Rao GVS, Ramdas S (1969) J Phys Chem 73:672CrossRefGoogle Scholar
  4. 4.
    Jiang N, Wachsman ED (1999) J Am Ceram Soc 82:3057CrossRefGoogle Scholar
  5. 5.
    Inaba H, Tagawa H (1996) Solid State Ion 83:1CrossRefGoogle Scholar
  6. 6.
    Aidhy DS, Nino JC, Sinnott SB, Wachsman ED, Phillpot SR (2008) Journal of American Ceramics Society 91:2349CrossRefGoogle Scholar
  7. 7.
    Wachsman ED, Boyapati S, Kaufman MJ (2000) Journal of American Ceramics Society 83(8):1964CrossRefGoogle Scholar
  8. 8.
    Walsh A, Watson GW, Payne DJ, Edgell RG, Guo J, Glans PA, Learmonth T, Smith KE (2006) Physical Review B 73:235104CrossRefGoogle Scholar
  9. 9.
    Carlsson JM, Hellsing B, Domingos HS, Bristowe PD (2002) Physical Review B 65:205122CrossRefGoogle Scholar
  10. 10.
    Skorodumova NV, Jonsson AK, Herranen M, Strømme M, Niklasson GA, Johansson B, Simak SI (2005) Appl Phys Lett 86:241910CrossRefGoogle Scholar
  11. 11.
    Zhong G, Wang J, Dai Z, Wang J, Zeng Z (2009) Physics Status Solidi B 246:97CrossRefGoogle Scholar
  12. 12.
    Medvedeva NI, Zhukov VP, Gubanov VA, Novikov DL, Klein BM (1996) J Phys Chem Solids 57:1243CrossRefGoogle Scholar
  13. 13.
    Wachsman ED, Boyapati S, Jiang N (2001) Ionics 7:1CrossRefGoogle Scholar
  14. 14.
    Shannon RD (1976) Acta Crystallographica A 32:751CrossRefGoogle Scholar
  15. 15.
    Shirao K, Iida T, Fukushima K, Iwadate Y (1998) J Alloy Compd 281:163CrossRefGoogle Scholar
  16. 16.
    Jiang N, Wachsman ED, Jung S-H (2002) Solid State Ion 150:347CrossRefGoogle Scholar
  17. 17.
    Jacobs PWM, Mac Dönaill DA (1987) Solid State Ion 23:279CrossRefGoogle Scholar
  18. 18.
    Wolf D, Keblinski P, Phillpot SR, Eggebrecht J (1999) J Chem Phys 110:8254CrossRefGoogle Scholar
  19. 19.
    Dick BG, Overhauser AW (1958) Physical Review 112:90CrossRefGoogle Scholar
  20. 20.
    Shannon RD (1993) J Appl Physi 70:348CrossRefGoogle Scholar
  21. 21.
    Boyapati S, Wachsman ED, Jiang N (2001) Solid State Ion 140:149CrossRefGoogle Scholar
  22. 22.
    Aidhy DS, Sinnott SB, Wachsman ED, Phillpot SR, Nino JC (2009) J Solid State Chem 182:1222CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Dilpuneet S. Aidhy
    • 1
    • 3
  • Susan B. Sinnott
    • 1
  • Eric D. Wachsman
    • 2
  • Simon R. Phillpot
    • 1
  1. 1.Department of Materials Science and EngineeringUniversity of FloridaGainesvilleUSA
  2. 2.University of Maryland Energy Research CenterUniversity of MarylandCollege ParkUSA
  3. 3.Department of Materials Science and EngineeringNorthwestern UniversityEvanstonUSA

Personalised recommendations