Skip to main content
Log in

Dielectric relaxation and ionic conductivity studies of Ag2ZnP2O7

  • Original Papers
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The complex impedance of the Ag2ZnP2O7 compound has been investigated in the temperature range 419–557 K and in the frequency range 200 Hz–5 MHz. The Z′ and Z′ versus frequency plots are well fitted to an equivalent circuit model. Dielectric data were analyzed using complex electrical modulus M* for the sample at various temperatures. The modulus plot can be characterized by full width at half-height or in terms of a non-exponential decay function \( \phi \left( {\text{t}} \right) = \exp {\left( { - {\text{t}}/\tau } \right)^\beta } \). The frequency dependence of the conductivity is interpreted in terms of Jonscher’s law: \( \sigma \left( \omega \right) = {\sigma_{\text{dc}}} + {\text{A}}{\omega^n} \). The conductivity σ dc follows the Arrhenius relation. The near value of activation energies obtained from the analysis of M″, conductivity data, and equivalent circuit confirms that the transport is through ion hopping mechanism dominated by the motion of the Ag+ ions in the structure of the investigated material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Dridi N, Boukhari A, Réau JM, Arbib E, Holt EM (2001) Mater Lett 47:212

    Article  CAS  Google Scholar 

  2. Vincent V, Nihoul G, Gavarri JR (1996) Solid State Ion 92:11

    Article  CAS  Google Scholar 

  3. Fukuoka H, Matsunaga H, Yamanaka S (2003) Mater Res Bull 38:991

    Article  CAS  Google Scholar 

  4. El Maadi A, Bennazha J, Réau JM, Boukhari A, Holt EM (2003) Mater Res Bull 38:865

    Article  CAS  Google Scholar 

  5. El Khayati N, Rodríguez-Carvajal J, Bourée F, Roisnel T, Cherkaoui R, Boutfessi A, Boukhari A (2002) Solid State Sci 4:1273

    Article  CAS  Google Scholar 

  6. Chen J, Pang W, Xu R (1999) Top Catal 9:93

    Article  Google Scholar 

  7. Zhang Y, Liu Y, Fu S, Guo F, Qian Y (2006) Bull Chem Soc Jpn 79:270

    Article  CAS  Google Scholar 

  8. Jarboui A, Ben Rhaiem A, Hlel F, Guidara K, Gargouri M (2009). Ionics. doi:10.1007/s11581-009-0333-5

  9. Belharouak I, Parent C, Gravereau P, Chaminade J, Le Flem PG, Moine B (2000) J Solid State Chem 149:284

    Article  CAS  Google Scholar 

  10. Belharouak I, Gravereau P, Parent C, Chaminade JP, Lebraud E, Le Flem G (2000) J Solid State Chem 152:466

    Article  CAS  Google Scholar 

  11. Sanz F, Parada C, Rojo JM, Ruiz-Valero C, Saez-Puche R (1999) J Solid State Chem 145:604

    Article  CAS  Google Scholar 

  12. Santha N, Nayar V, Keresztury G (1993) Spectrochim Acta 49A:47

    CAS  Google Scholar 

  13. Mahadevan Pillai VP, Thomas BR, Nayar V, Lii KH (1999) Spectrochim Acta 55A:1809

    Google Scholar 

  14. Kuhlmann U, Thomsen C, Prokoviev AV, Bullesfeld F, Uhrig E, Assmus W (2001) Physica B301:27

    Google Scholar 

  15. Migahed MD, Bakr NA, Abdel-Hamid MI, EL-Hannafy O, El-Nimr M (1996) J Appl Polym Sci 59:655

    Article  CAS  Google Scholar 

  16. Macedo PB, Moynihan CT, Bose R (1972) Phys Chem Glasses 13:171

    CAS  Google Scholar 

  17. Sural M, Ghosh A (2000) Solid State Ion 130:259

    Article  CAS  Google Scholar 

  18. Gómez D, Algría A (2001) J Non-Cryst Solids 287:246

    Article  Google Scholar 

  19. Anantha PS, Hariharan K (2005) Mater Sci Eng B121:12

    Article  CAS  Google Scholar 

  20. Padmasree K, Kanchan DK, Kulkarni AR (2006) Solid State Ion 177:475

    Article  CAS  Google Scholar 

  21. Havriliak S, Negami S (1967) Polym 8:161

    Article  CAS  Google Scholar 

  22. Ngai KL, Rizos AK, Plazek DJ (1998) J Non-Cryst Solids 235:435

    Google Scholar 

  23. Alvarez F, Alegría A, Colmenero J (1991) Phys Rev B44:7306

    Google Scholar 

  24. Alvarez F, Alegría A, Colmenero J (1993) Phys Rev B47:125

    Google Scholar 

  25. Saha S, Sinha TP (2005) Phys Rev B65:134103

    Google Scholar 

  26. Jonscher AK (1983) Dielectric relaxation in solids. Chelsea Dielectric Press, London

    Google Scholar 

  27. Jain H, Mundy JN (1987) J Non-Cryst Solids 91:315

    Article  CAS  Google Scholar 

  28. Mott NF, Davis EA (1970) Electronic progresses in non-crystalline solids. Clarendon, Oxford

    Google Scholar 

  29. Dyre JC, Schroder TB (2000) Rev Mod Phys 72:873

    Article  Google Scholar 

  30. Elliott SR (1988) Solid State Ion 27:131

    Article  Google Scholar 

  31. Ben Rhaiem A, Zouari N, Guidara K, Gargouri M, Daoud A (2005) J Alloys Compd 387:1

    Article  CAS  Google Scholar 

  32. Ghosh A, Pan A (2000) Phys Rev Lett 84:2188

    Article  CAS  Google Scholar 

  33. Ghosh A, Chakravorty D (1993) Phys Rev B 48:5167

    Article  CAS  Google Scholar 

  34. Ghosh A (1989) J Appl Phys 66:2425

    Article  CAS  Google Scholar 

  35. Ghosh A (1990) Phys Rev B 42:5665

    Article  CAS  Google Scholar 

  36. Ghosh A (1994) Phys Rev B 49:3131

    Article  Google Scholar 

  37. Kolodziej H, Sobczyk L (1971) Acta Phys Pol A39:59

    Google Scholar 

  38. Papathanassiou AN (2006) J Non-Cryst Solids 352:5444

    Article  CAS  Google Scholar 

  39. Papathanassiou AN (2005) J Phys Chem Solids 66:1849

    Article  CAS  Google Scholar 

  40. Louati B, Gargouri M, Guidara K, Mhiri T (2005) J Phys Chem Solids 66:762

    Article  CAS  Google Scholar 

  41. Dyre JC (1988) J Appl Phys 64:2456

    Article  Google Scholar 

  42. Chen RH, Chen TM, Shern CS (2001) J Phys Chem Solids 61:1399

    Article  Google Scholar 

  43. Chen RH, Wang RJ, Chen TM, Shern CS (2000) J Phys Chem Solids 61:519

    Article  CAS  Google Scholar 

  44. Ben Rhaiem A, Hlel F, Guidara K (2009) J Alloys Compd 485:718

    Article  CAS  Google Scholar 

  45. Almond DP, West AR (1987) Solid State Ion 23:27

    Article  CAS  Google Scholar 

  46. Uvarov NF, Hairetdinov EF, Reau JM, Bobe JM, Senegas J, Poulain M (1994) Solid State Ion 74:195

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdallah Ben Rhaiem.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ben Rhaiem, A., Chouaib, S. & Guidara, K. Dielectric relaxation and ionic conductivity studies of Ag2ZnP2O7 . Ionics 16, 455–463 (2010). https://doi.org/10.1007/s11581-009-0411-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-009-0411-8

Keywords

Navigation