Skip to main content
Log in

Bond strength-coordination number fluctuations and the fragility of some ion-conducting oxide and chalcogenide glass-forming liquids

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The concept of fragility has been used widely to characterize the temperature dependence of the viscosity of glass-forming liquids. According to a model proposed by one of the authors, the fragility is determined by the relaxation of structural units that form the melt and is described in terms of the bond strength, coordination number, and their fluctuations. In the present contribution, the model is applied to investigate the temperature dependence of the viscosity of some ion-conducting oxide and chalcogenide glass-forming liquids. From the analysis of the model, physical quantities such as the number of bonds that must be broken to observe the viscous flow are obtained. The analysis suggests also that good ionic conductors have an intermediate value of fragility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ingram MD (1987) Phys Chem Glasses 28:215

    CAS  Google Scholar 

  2. Bunde A, Funke K, Ingram MD (1998) Solid State Ionics 105:1

    Article  CAS  Google Scholar 

  3. Angell CA, Ngai KL, McKenna GB, McMillan PF, Martin SW (2000) J Appl Phys 88:3113

    Article  CAS  Google Scholar 

  4. Debenedetti PG, Stillinger FH (2001) Nature 410:259

    Article  CAS  Google Scholar 

  5. Angell CA (1988) J Phys Chem Solids 49:863

    Article  CAS  Google Scholar 

  6. Aniya M (2002) J Therm Anal Cal 69:971

    Article  CAS  Google Scholar 

  7. Aniya M, Shinkawa T (2007) J Mater Sci Mater Electron 18:S247

    Article  CAS  Google Scholar 

  8. Aniya M, Shinkawa T (2007) Mater Trans 48:1793

    Article  CAS  Google Scholar 

  9. Lee S-K, Tatsumisago M, Minami T (1997) Phys Chem Glasses 38:144

    CAS  Google Scholar 

  10. Lee S-K, Tatsumisago M, Minami T (1993) J Ceram Soc Jpn 101:1018

    CAS  Google Scholar 

  11. Ota R, Wakasugi T, Kawamura W, Tuchiya B, Fukunaga J (1995) J Non-Cryst Solids 188:136

    Article  CAS  Google Scholar 

  12. Cryssikos GD, Kamitsos EI, Kapoutsis JA, Patsis AP (1994) Chim Chron 23:271

    Google Scholar 

  13. Málek J, Shánělová J (2005) J Non-Cryst Solids 351:3458

    Article  CAS  Google Scholar 

  14. Košt’ál P, Shánělová J, Málek J (2005) J Non-Cryst Solids 351:3152

    Article  CAS  Google Scholar 

  15. Aniya M (2002) Solid State Ionics: Trends in the New Millennium. In: Chowdari BVR et al (eds). World Scientific, Singapore p 709

  16. Aniya M, Shimojo F (2004) J Non-Cryst Solids 341:110

    Article  CAS  Google Scholar 

  17. Zotov N, Bellido F, Jimenez-Garay R (1997) J Non-Cryst Solids 209:149

    Article  CAS  Google Scholar 

  18. Aniya M (2000) Solid State Ionics 136 & 137:1085

    Article  Google Scholar 

  19. Aniya M (1992) J Phys Soc Jpn 61:4474

    Article  CAS  Google Scholar 

  20. Ikeda M, Aniya M (2009) Solid State Ionics 180:522

    Article  CAS  Google Scholar 

  21. Vogel H (1921) J Phys Z 22:645

    CAS  Google Scholar 

  22. Fulcher GS (1925) J Am Ceram Soc 8:339

    Article  CAS  Google Scholar 

  23. Tammann G, Hesse W (1926) Z Anorg Allg Chem 156:245

    Article  Google Scholar 

  24. Ferreira Nascimento ML, Aparicio C (2007) J Phys Chem Solids 68:104

    Article  CAS  Google Scholar 

  25. Greaves GN, Fontaine A, Lagarde P, Raoux D, Gurman SJ (1981) Nature 293:611

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a Grant-in-Aid for Scientific Research from the Japan Society for the promotion of Science (No. 19560014) and by a Grant-in-Aid for Scientific Research on Priority Area, “Nanoionics (439)” from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaru Aniya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aniya, M., Ikeda, M. Bond strength-coordination number fluctuations and the fragility of some ion-conducting oxide and chalcogenide glass-forming liquids. Ionics 16, 7–11 (2010). https://doi.org/10.1007/s11581-009-0380-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-009-0380-y

Keywords

Navigation