Skip to main content
Log in

Preparation, characterization, and electrochemical performances of carbon-coated TiO2 anatase

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Several carbon-coated anatase TiO2 samples have been prepared by impregnation with lactose as carbon precursor and annealed at different temperatures (650 and 700 °C). X-ray diffraction was carried out to study the anatase to rutile phase transition and to evaluate the crystallite size. Scanning electron microscopy was utilized to evaluate the morphology, and transmission electron microscopy was used to show the distribution and nature of the carbon coating. The galvanostatic measurements and cyclic voltammetry revealed better kinetics, cycling stability, and high rate capacity for the carbon-coated materials when compared with the noncoated ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Murphy D, Cava R, Zahurak S, Santoro A (1983) Solid State Ion 9–10:413

    Article  Google Scholar 

  2. Zachau-Christiansen B, West K, Jacobsen T, Atlung S (1989) Solid State Ion 28–30:1176

    Google Scholar 

  3. Ohzuku T, Komoma T, Hirai T (1985) J Power Sources 46:61

    Google Scholar 

  4. Huang S, Kavan L, Exnar I, Grätzel M (1995) J Electrochem Soc 142:L142

    Article  CAS  Google Scholar 

  5. Kavan L, Rathousky J, Grätzel M, Shklover V, Zukal A (2000) J Phys Chem B 104:12012

    Article  CAS  Google Scholar 

  6. Kavan L, Attia A, Lenzmann F, Elder S, Grätzel M (2000) J Electrochem Soc 147:2897

    Article  CAS  Google Scholar 

  7. Sudant G, Baudrin E, Larcher D, Tarascon J-M (2005) J Mater Chem 15:1263

    CAS  Google Scholar 

  8. Wagemaker M, Borghols WJH, Mulder FM (2007) J Am Chem Soc 129:4323

    Article  CAS  Google Scholar 

  9. Kavan L, Prochazka J, Spitler T, Kalbac M, Zukalova M, Drezen T, Grätzel M (2003) J Electrochem Soc 150:A1000

    Article  CAS  Google Scholar 

  10. Guo YG, Hu YS, Maier J (2007) Chem Commun 9:425

    Google Scholar 

  11. Kavan L, Rathousky J, Grätzel M, Shklover V, Zukal A (2001) Microporous Mesoporous Mater 44-45:653

    Article  CAS  Google Scholar 

  12. Fatthakova D, Wark M, Brezesinski T, Smarsly B, Rathousky J (2007) Adv Funct Mater 19:2087

    Google Scholar 

  13. Kubiak P, Geserick J, Hüsing N, Wohlfahrt-Mehrens M (2008) J Power Sources 175:510

    Article  CAS  Google Scholar 

  14. Mancini M, Kubiak P, Geserick J, Marassi R, Hüsing N, Wohlfahrt-Mehrens M (2009) J Power Sources 189:585

    Article  CAS  Google Scholar 

  15. Modriguchi I, Hidaka R, Yamada H, Kudo T, Murakami H, Nakashima N (2006) Adv Mater 18:69

    Article  Google Scholar 

  16. Nobili F, Dsoke S, Mecozzi T, Marassi R (2005) Electrochim Acta 51:536

    Article  CAS  Google Scholar 

  17. Dominko R, Gaberscek M, Bele M, Mihailovic D, Jamnik J (2007) J Eur Ceram Soc 27:909

    Article  CAS  Google Scholar 

  18. Ravet N, Chouinard Y, Magnan JF, Besner S, Gauthier M, Armand M (2001) J Power Sources 97:503

    Article  Google Scholar 

  19. Arnal P, Corriu R, Leclercq D, Mutin H, Vioux A (1996) J Mater Chem 6:1925

    Article  CAS  Google Scholar 

  20. Zhang H, Banfield JF (1998) J Mater Chem 8:2073

    Article  CAS  Google Scholar 

  21. Gnanasekar KI, Subramanian V, Robinson J (2002) J Mater Res 17:1507

    Article  CAS  Google Scholar 

  22. Reidy DJ, Holmes JD, Morris MA (2006) J Eur Ceram Soc 26:1527

    Article  CAS  Google Scholar 

  23. Mao D, Lu G, Chen Q (2004) Appl Catal A 263:83

    Article  CAS  Google Scholar 

  24. Hirano M, Nakahara C, Ota K, Tanaike O, Inagaki M (2003) J Solid State Chem 170:39

    Article  CAS  Google Scholar 

  25. Van de Krol R, Goossens A, Meulenkamp E (1999) J Electrochem Soc 146:3150

    Article  Google Scholar 

  26. Hengerer R, Kavan L, Krtil P, Grätzel M (2000) J Electrochem Soc 147:1467

    Article  CAS  Google Scholar 

  27. Wagemaker M, Kentgens A, Mulder F (2002) Nature 418:397

    Article  CAS  Google Scholar 

  28. Krtil P, Kavan L, Fattakhova D (1997) J Solid State Electrochem 1:83

    Article  CAS  Google Scholar 

  29. Krtil P, Fattakhova D, Kavan L, Burnside S, Grätzel M (2000) Solid State Ion 135:101

    Article  CAS  Google Scholar 

  30. Aldon L, Kubiak P, Picard A, Jumas JC, Olivier-Fourcade J (2006) Chem Mater 18:1401

    Article  CAS  Google Scholar 

  31. Kavan L, Grätzel M, Gilbert SE, Klemenz C, Scheel HJ (1996) J Am Chem Soc 118:6716

    Article  CAS  Google Scholar 

  32. van de Krol R, Goossens A, Schoonman J (1999) J Phys Chem B 103:7151

    Article  Google Scholar 

Download references

Acknowledgment

Financial support from the BMBF in the framework of the LISA project (03SF0327A) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Kubiak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pfanzelt, M., Kubiak, P., Hörmann, U. et al. Preparation, characterization, and electrochemical performances of carbon-coated TiO2 anatase. Ionics 15, 657–663 (2009). https://doi.org/10.1007/s11581-009-0364-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-009-0364-y

Keywords

Navigation