Synthesis, characterization, and kinetic study of Mn(DPM)3 used as precursor for MOCVD


Highly pure Mn(DPM)3 (DPM-2,2,6,6-tetramethyl-3, 5-heptanedionato) complex, usually used as precursor for metal-organic chemical vapor deposition, was synthesized and characterized by elemental analyses, 1H-NMR spectroscopy, mass spectroscopic analysis, thermogravimetry, and differential scanning calorimetry. The thermal decomposition behavior of the complex is sensitive to the ambient gases, and the oxygen atmosphere will accelerate the decomposition and oxidation of the complex. According to mass spectroscopic analysis at elevated temperature, one of the three DPM groups in Mn(DPM)3 will dissociate primarily, following with dissociation of +C(CH3)3 and +OCCH2COC(CH3)3 groups in sequence. It can be interpreted by the difference of metal ion radius. The kinetic parameters of activation energy and frequency factor were computed using different models and thereinto D2 model best adjusted the experimental isothermal thermogravimetric data.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Singhal SC, Kendall K (2003) High temperature solid oxide fuel cells: fundamentals, design and applications. Elsevier Advanced Technology, UK

    Google Scholar 

  2. 2.

    McCarroll WH, Ramanujachary KV, Greenblatt M, Cosandey F (1998) J Solid State Chem 136:322

    Article  CAS  Google Scholar 

  3. 3.

    Whangbo MH, Koo HJ, Villesuzanne A, Pouchard M (2002) Inorg Chem 41(7):1920

    Article  CAS  Google Scholar 

  4. 4.

    Alonso JA, Martinez-Lope MJ, Casais MT, Fernandez-Diaz MT (2000) Inorg Chem 39(5):917

    Article  CAS  Google Scholar 

  5. 5.

    Chen CH, Kelder EM, Jak MLG, Schoonman J (1996) Solid State Ion 86–88:1301

    Article  Google Scholar 

  6. 6.

    Egerton EJ, Sood AK, Singh R, Puri YR, Look DC, Steiner T (2005) J Electron Mater 34(8):1183

    Article  CAS  Google Scholar 

  7. 7.

    Chikoidze E, Dumont Y, Jomard F, Ballutaud D, Galfier P, Gorochov O, Ferrand D (2005) J Appl Physi 97(10):10D327

    Article  CAS  Google Scholar 

  8. 8.

    Neubeck W, Ranno L, Hunt MB, Vettier C, Givord D (1999) Appl Surf Sci 138–139:195

    Article  Google Scholar 

  9. 9.

    Fan DB, Yang X, Wang H, Zhang Y, Yan H (2003) Physica B 337:165

    Article  CAS  Google Scholar 

  10. 10.

    Lokhande CD, Ennaoui A, Patil PS, Giersig M, Muller M, Diesner K, Tributsch H (1998) Thin Solid Films 330:70

    Article  CAS  Google Scholar 

  11. 11.

    Mayen-Hernandez SA, Sandoval SJ, Perez RC, Delgado GT, Chao BS, Sandoval OJ (2003) J Cryst Growth 256:12

    Article  CAS  Google Scholar 

  12. 12.

    David L, Bradford C, Tang X, Graham TCM, Prior KA, Cavenett BC (2003) J Cryst Growth 251:591

    Article  CAS  Google Scholar 

  13. 13.

    Wang HB, Meng GY, Peng DK (2000) Thin Soild Films 368:275–278

    Article  CAS  Google Scholar 

  14. 14.

    Herrero E, Cabanas MV, Alonso J, Conde F, Gonzalez-Calbet JM, Vallet-Regi M (1999) Chem Mater 11(12):3521

    Article  CAS  Google Scholar 

  15. 15.

    Yoshida M, Yamaguchi H, Sakuma T, Miyasaka Y, Lesaiicherre PY, Ishitani A (1995) J Electrochem Soc 142:244

    Article  CAS  Google Scholar 

  16. 16.

    Takemura K, Yamamichi S, Lesaiicherre PY, Tokashiki K, Miyamoto H, ono H, Miyasaka Y, Yoshida M (1995) Jpn J Appl Phys 34:5224

    Article  CAS  Google Scholar 

  17. 17.

    Cho YS, Cho S, Ryu H, Heo JS, Lee DH, Moon SH (2003) J Electrochem Soc 150(2):F11

    Article  CAS  Google Scholar 

  18. 18.

    Jiang YZ, Song HZ, Li L, Bao WT, Meng GY (2004) J Cryst Growth 267:256

    Article  CAS  Google Scholar 

  19. 19.

    Yamada T, Imagara K, Mukaiyama T (1992) Chem Lett 11:2109

    Article  Google Scholar 

  20. 20.

    Ihanus J, Lankinen MP, Kemell M, Ritala M, Leskela M (2005) J Appl Physi 98(11):526

    Article  CAS  Google Scholar 

  21. 21.

    Nilsen O, Foss S, Fjellvag H, Kjekshus A (2004) Thin Solid Films 468(1–2):65

    Article  CAS  Google Scholar 

  22. 22.

    Wojcik A, Kopalko K, Godlewski M, Lusakowska E, Paszkowicz W, Dybko K, Domagala J, Szczerbakow A, Kaminska E (2004) Acta Phys Pol, A 105(6):667

    CAS  Google Scholar 

  23. 23.

    Abrutis A, Plausinaitiene V, Teiserskis A, Saltyte Z, Kubilius V, Bartasyte A, Senateur JP (2001) Journal De Physique IV 11:215

    CAS  Google Scholar 

  24. 24.

    Nakamura T, Tai R, Nishimura T, Tachibana K (2005) J Electrochem Soc 152(9):C584

    Article  CAS  Google Scholar 

  25. 25.

    Nakamura T, Tai R, Nishimura T, Tachibana K (2005) J Appl Physi 97(10):712

    Google Scholar 

  26. 26.

    Nilsen O, Fjellvag H, Kjekshus A (2003) Thermochim Acta 404(1–2):187

    Article  CAS  Google Scholar 

  27. 27.

    Ryu H, Heo JS, Cho S, Chung C, Moon SH (2000) J Electrochem Soc 147(3):1130

    Article  CAS  Google Scholar 

  28. 28.

    Nakamura T, Tai R, Nishimura T, Tachibana K (2005) J Electrochem Soc 152(9):C584

    Article  CAS  Google Scholar 

  29. 29.

    Hashimoto T, Koinuma H, Nakabayashi M, Shiraishi T, Suemune Y, Yamamoto T (1992) J Mater Res 7:336

    Article  Google Scholar 

  30. 30.

    Giera E (2000) J Chem Thermodyn 32:821

    Article  CAS  Google Scholar 

  31. 31.

    Strem Chemicals For Research (metals, inorganics, and organometallics). Catalog no. 20, 2004–2006

  32. 32.

    Song HZ, Jiang YZ, Xia CR, Meng GY, Peng DK (2003) J Cryst Growth 250:423

    Article  CAS  Google Scholar 

  33. 33.

    Belova NV, Girichev GV, Hinchley SL, Kuzmina NP, Rankin DWH, Zaitzeva IG (2004) Dalton Trans 1980:1715–1718

    Article  CAS  Google Scholar 

  34. 34.

    Ozawa T (1965) Bull Chem Soc Jpn 38:1881

    Article  CAS  Google Scholar 

Download references


This work was supported by the National Natural Science Foundation of China under contract no. 20271047.

Author information



Corresponding author

Correspondence to Yinzhu Jiang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yan, R., Huang, W., Wang, Q. et al. Synthesis, characterization, and kinetic study of Mn(DPM)3 used as precursor for MOCVD. Ionics 15, 627–633 (2009).

Download citation


  • β-Diketonate
  • Metal-organic chemical vapor deposition
  • Thermal decomposition
  • Kinetics