Skip to main content
Log in

Impedance studies on bismuth-ruthenate-based electrodes

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Doped bismuth ruthenates and bismuth ruthenate-stabilized bismuth oxide composites were studied as prospective cathode material for solid oxide fuel cells. Symmetric cells were fabricated on gadolinium-doped ceria electrolytes and studied by electrochemical impedance spectroscopy. Ca- and Ag-doped bismuth ruthenate electrodes (5–10 mol%) showed the same characteristic frequency as undoped bismuth ruthenate but with higher activation energy and slightly better performance above ∼550 °C. At 700 °C, area-specific resistance (ASR) of undoped, 5 mol% Ca and 5 mol% Sr-doped bismuth ruthenate electrode was 1.45, 1.24, and 1.41  Ωcm2, respectively. The change in ASR as a function of oxygen partial pressure and current bias suggests that the rate-limiting steps for oxygen reduction in bismuth ruthenate systems are charge transfer and surface diffusion of dissociatively adsorbed oxygen to triple phase boundaries. Introduction of the erbia-stabilized bismuth oxide (ESB) phase reduced both the rate-limiting steps resulting in much improved electrode performance. At 700 °C, composite electrodes containing 31.25–43.75 wt% ESB exhibited an ASR of 0.08–0.11 Ωcm2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Steele BCH (2000) Materials for IT-SOFC stacks 35 years R&D: the inevitability of gradualness. Solid State Ionics 134:3–20

    Article  CAS  Google Scholar 

  2. Steele BCH (2001) Material science and engineering: the enabling technology for the commercialisation of fuel cell systems. J Mater Sci 36:1053–1068

    Article  CAS  Google Scholar 

  3. Ralph JM, Schoeler AC, Krumpelt M (2001) Materials for lower temperature solid oxide fuel cells. J Mater Sci 36:1161–1172

    Article  CAS  Google Scholar 

  4. Doshi R, Richards VL, Carter JD et al (1999) Development of solid-oxide fuel cells that operate at 500 C. J Electrochem Soc 146:1273–1278

    Article  CAS  Google Scholar 

  5. Bae JM, Steele BCH (1999) Properties of pyrochlore ruthenate cathodes for intermediate temperature solid oxide fuel cells. J Electroceram 3:37–46

    Article  CAS  Google Scholar 

  6. Takeda T, Kanno R, Kawamoto Y et al (2000) New cathode materials for solid oxide fuel cells—ruthenium pyrochlores and perovskites. J Electrochem Soc 147:1730–1733

    Article  CAS  Google Scholar 

  7. Jaiswal A, Wachsman ED (2005) Bismuth-ruthenate-based cathodes for IT-SOFCs. J Electrochem Soc 152:A787–A790

    Article  CAS  Google Scholar 

  8. Esposito V, Traversa E, Wachsman ED (2005) Pb2Ru2O6.5 as a low-temperature cathode for bismuth oxide electrolytes. J Electrochem Soc 152:A2300–2306

    Article  CAS  Google Scholar 

  9. Jaiswal A, Hu C, Wachsman ED (2007) Bismuth ruthenate-stabilized bismuth oxide composite cathodes for IT-SOFC. J Electrochem Soc 154:B1088–B1094

    Article  CAS  Google Scholar 

  10. Camaratta M, Wachsman ED (2008) High-performance composite Bi2Ru2O7–Bi1.6Er0.4O3 cathodes for intermediate-temperature solid oxide fuel cells. J Electrochem Soc 155:B135–B142

    Article  CAS  Google Scholar 

  11. Goodenough JB (2003) Oxide-ion electrolytes. Annu Rev of Mater Res 33:91–128

    Article  CAS  Google Scholar 

  12. Schuler M, Kemmler-sack S (1984) The Bi2-x B x Ru2O7-z (B = Mn, Co, Ni, Cu, Zn, Cd, Mg, Ca, Sr) system. J Less-Common Met 102:105–112

    Article  CAS  Google Scholar 

  13. Beck E, Kemmler-sack S (1986) The Bi2-x M x Ru2O7-z (M = Li, Na, K, Ag) system. J Less-Common Met 119:151–158

    Article  CAS  Google Scholar 

  14. Azad AM, Larose S, Akbar SA (1994) Bismuth oxide-based solid electrolytes for fuel-cells. J Mater Sci 29:4135–4151

    Article  CAS  Google Scholar 

  15. Shuk P, Wiemhofer HD, Guth U et al (1996) Oxide ion conducting solid electrolytes based on Bi2O3. Solid State Ionics 89:179–196

    Article  CAS  Google Scholar 

  16. Sammes NM, Tompsett GA, Nafe H et al (1999) Bismuth based oxide electrolytes—structure and ionic conductivity. J Eur Ceram Soc 19:1801–1826

    Article  CAS  Google Scholar 

  17. Jaiswal A (2004) Electrochemical studies on selected oxides for intermediate temperature–solid oxide fuel cells. Ph.D. Thesis, University of Florida, Gainesville, FL

  18. Verkerk MJ, Burggraaf AJ (1983) Oxygen-transfer on substituted ZrO2, Bi2O3, and CeO2 electrolytes with platinum-electrodes 2. ac impedance study. J Electrochem Soc 130:78–84

    Article  CAS  Google Scholar 

  19. Linquette-Mailley A, Caneiro A, Djurado E et al (1998) Low-temperature oxygen electrode reaction on bismuth ruthenium oxides/stabilized zirconia. Solid State Ionics 107:191–201

    Article  CAS  Google Scholar 

  20. Nagamoto H, Inoue H (1989) Characteristics of electrode overpotential over doped bismuth oxide solid electrolyte. J Electrochem Soc 136:2088–2093

    Article  CAS  Google Scholar 

  21. Wang LS, Barnett SA (1995) Ag-perovskite cermets for thin-film solid oxide fuel-cell air-electrode applications. Solid State Ionics 76:103–113

    Article  CAS  Google Scholar 

  22. Field M, Kennedy BJ, Hunter BA (2000) Structural studies of the metal–nonmetal transition in Ru pyrochlores. J Solid State Chem 151:25–30

    Article  CAS  Google Scholar 

  23. Kanno R, Takeda Y, Yamamoto Y et al (1993) Crystal structure and electrical properties of the pyrochlore ruthenate Bi2-x Y x Ru2O7. J Solid State Chem 102:106–114

    Article  CAS  Google Scholar 

  24. Yamamoto T, Kanno R, Takeda Y et al (1994) Crystal structure and metal-semiconductor transition of the Bi2-x Ln xRu2O7 pyrochlores (Ln = Pr-Lu). J Solid State Chem 109:372–383

    Article  CAS  Google Scholar 

  25. Ishi F, Oguchi T (2000) Electronic band structure of the pyrochlore ruthenium oxides A 2Ru2O7 (A= Bi, Tl and Y). J Phys Soc Jpn 69:526–531

    Article  Google Scholar 

  26. Avdeev M, Haas MK, Jorgensen JD (2002) Static disorder from lone-pair electrons in Bi2-x M x Ru2O7-y (M = Cu,Co; x = 0,0.4) pyrochlores. J Solid State Chem 169:24–34

    Article  CAS  Google Scholar 

  27. Kennedy BJ (1996) Structural and bonding trends in ruthenium pyrochlores. J Solid State Chem 126:261–270

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors wish to acknowledge the support of the Department of Energy under grant no. DE-FC26-03NT41959 for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric D. Wachsman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jaiswal, A., Wachsman, E.D. Impedance studies on bismuth-ruthenate-based electrodes. Ionics 15, 1–9 (2009). https://doi.org/10.1007/s11581-008-0289-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-008-0289-x

Keywords

Navigation