Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Mathematical modeling of the operation of SOFC Nickel-cermet anodes

  • 122 Accesses

  • 7 Citations

Abstract

A surface diffusion–reaction model is developed and solved to describe the steady-state operation of Nickel-cermet anodes in solid oxide fuel cells. The model accounts for the migration (backspillover) and diffusion of oxygen ions from the solid electrolyte onto the nickel surface and the concomitant reaction with the fuel over a finite reaction zone extending from the three-phase boundaries onto the Ni–gas interface. The model is developed for various nickel particle geometries and is compared with existing anode model predictions for flat geometries. The performance of the anode, expressed by an anodic effectiveness factor, is found to depend on two dimensionless numbers, which contain all the operational and structural information of the anode. The model is validated with literature experimental data regarding the dependence of the anode performance on the fuel partial pressure and predicts correctly the observed deviation from linearity of the dependence of cell current on fuel partial pressure.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    Singhal SC (2000) Solid State Ion 135:305

  2. 2.

    Zhu WZ, Deevi SC (2003) Mater Sci Eng A362:228

  3. 3.

    Kikuchi R, Eguchi K (2004) J Jpn Pet Inst 47(4):225

  4. 4.

    Steele BCH (1996) Solid State Ion 86–88:1223

  5. 5.

    Debenedetti PG, Vayenas CG (1983) Chem Eng Sci 38(11):1817–1829

  6. 6.

    Vayenas CG, Debenedetti PG, Yentekakis Y, Hegedus LL (1985) Ind Eng Chem Fundam 24:316–324

  7. 7.

    Michaels JN, Vayenas CG, Hegedus LL (1986) J Electrochem Soc 133(3):522–525

  8. 8.

    Costamagna P, Selimovic A, Del Borghi M, Agnew G (2004) Chem Eng J 102:61–69

  9. 9.

    Bieberle A, Gauckler LJ (2002) Solid State Ion 146:23–41

  10. 10.

    Chan SH, Low CF, Ding OL (2002) J Power Sources 103:188–200

  11. 11.

    Ackmann T, de Haart GJ, Lehnert W, Stolten D (2003) J Electrochem Soc 150(6):A783–A789

  12. 12.

    Li P-W, Suzuki K (2004) J Electrochem Soc 151(4):A548–A557

  13. 13.

    Mandin P, Bernay C, Tran-Dac S, Broto A, Abes D, Cassir M (2006) Fuel Cells 06 1:71–78

  14. 14.

    Bessler WG (2005) Solid State Ion 176:997–1011

  15. 15.

    Schneider LCR, Martin CL, Bultel Y, Bouvard D, Siebert E (2006) Electrochim Acta 52:314–324

  16. 16.

    Hussain MM, Li X, Dincer I (2006) J Power Sources 161:1012–1022

  17. 17.

    Williford RE, Chick LA, Maupin GD, Simner SP (2003) J Electrochem Soc 150(8):A1067–A1072

  18. 18.

    Zhdanov VP (2003) Phys Rev E 67:042601–042604

  19. 19.

    Williford RE, Chick LA (2003) Surf Sci 547:421–437

  20. 20.

    Repetto L, Agnew G, Del Borghi A, Di Benedetto F, Costamagna P (2007) J Fuel Cell Sci Technol (in press)

  21. 21.

    Yakabe H, Hishinuma M, Uratani M, Matsuzaki Y, Yasuda I (2000) J Power Sources 86:423–431

  22. 22.

    Mizusaki J, Tagawa H, Isobe K, Tajika M, Koshiro I, Maruyama H, Hirano K (1994) J Electrochem Soc 141(8):1674

  23. 23.

    Zhdanov VP (2003) Phys Rev E 67:042601

  24. 24.

    Williford RE, Chick LA, Maupin GD, Simner SP, Stevenson JW (2003) J Electrochem Soc 150(8):A1067

  25. 25.

    Williford RE, Chick LA (2003) Surf Sci 547:421

  26. 26.

    Vayenas CG, Jaksic MM, Bebelis S, Neophytides SG (1996) In: Bockris JOM, Conway BE, White RE (eds) Modern aspects of electrochemistry, vol. 29. Kluwer, New York, p 57

  27. 27.

    Vayenas CG, Bebelis S, Ladas S (1990) Nature 343:625

  28. 28.

    Wieckowski A, Savinova E, Vayenas CG (2003) In: Catalysis and electrocatalysis at nanoparticles. Marcel Dekker, New York

  29. 29.

    Janek J, Luerßen B, Mutoro E, Fischer H, Günther S (2006) Top Catal (in press)

  30. 30.

    Vayenas CG, Bebelis S, Pliangos C, Brosda S, Tsiplakides D (2001) Electrochemical activation of catalysis: promotion, electrochemical promotion and metal-support interactions. Kluwer, New York

  31. 31.

    Riess I, Vayenas CG (2003) Solid State Ion 159(3–4):313–329

  32. 32.

    Abe H, Murata K, Fukui T, Moon W-J, Kaneko K, Naito M (2006) Thin Solid Films 496:49–52

  33. 33.

    Visco SS, De Jonghe LC (1997) J Electrochem Soc 144(3):L35–L37

  34. 34.

    Fukui T, Murata K, Ohara S, Abe H, Naito M, Nogi K (2004) J Power Sources 125:17–21

  35. 35.

    Kawada T, Sakai N, Yokokawa H, Dokiya M, Mori M, Iwata T (1990) J Electrochem Soc 137(10):3042–3047

  36. 36.

    Carrillo AS, Tagawa T, Goto S (2001) Mater Res Bull 36:1017–1027

  37. 37.

    Tietz F, Buchkremer H-P, Stöver D (2002) Solid State Ion 152–153:373–381

  38. 38.

    Marinšek M, Zupan K, Maèek J (2002) J Power Sources 106:178–188

  39. 39.

    Eguchi K, Kojo H, Takeguchi T, Kikuchi R, Sasaki K (2002) Solid State Ion 152–153:411

  40. 40.

    Yentekakis IV, Jiang Y, Neophytides S, Bebelis S, Vayenas CG (1995) Ionics 1:491

  41. 41.

    Bowden FB, Rideal E (1928) Proc Roy Soc A 120:59

  42. 42.

    Smith JM (1981) Chemical engineering kinetics, 3rd edn. McGraw-Hill, New York

  43. 43.

    Froment GF, Bischoff KB (1979) Chemical reactor analysis and design. Wiley, New York

  44. 44.

    Vayenas CG, Pitselis GE (2001) Ind Eng Chem Res 40:4209

  45. 45.

    Perusin S, Monceau D, Andrieu E (2005) J Electrochem Soc 152(12):E390

Download references

Acknowledgement

We are thankful to Dr. Anke Hagen for helpful discussions and to the European IP Project REAL SOFC: SES 6 CT2003 for financial support.

Author information

Correspondence to C. G. Vayenas.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s11581-008-0233-0

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Presvytes, D., Vayenas, C.G. Mathematical modeling of the operation of SOFC Nickel-cermet anodes. Ionics 13, 9–18 (2007). https://doi.org/10.1007/s11581-007-0070-6

Download citation

Keywords

  • SOFC anode modeling
  • Ni/YSZ cermet
  • Ni particle geometry
  • Overpotential
  • Anode effectiveness factor
  • Thiele modulus
  • Ion spillover