, Volume 13, Issue 1, pp 9–18 | Cite as

Mathematical modeling of the operation of SOFC Nickel-cermet anodes

  • D. Presvytes
  • C. G. Vayenas
Original Paper


A surface diffusion–reaction model is developed and solved to describe the steady-state operation of Nickel-cermet anodes in solid oxide fuel cells. The model accounts for the migration (backspillover) and diffusion of oxygen ions from the solid electrolyte onto the nickel surface and the concomitant reaction with the fuel over a finite reaction zone extending from the three-phase boundaries onto the Ni–gas interface. The model is developed for various nickel particle geometries and is compared with existing anode model predictions for flat geometries. The performance of the anode, expressed by an anodic effectiveness factor, is found to depend on two dimensionless numbers, which contain all the operational and structural information of the anode. The model is validated with literature experimental data regarding the dependence of the anode performance on the fuel partial pressure and predicts correctly the observed deviation from linearity of the dependence of cell current on fuel partial pressure.


SOFC anode modeling Ni/YSZ cermet Ni particle geometry Overpotential Anode effectiveness factor Thiele modulus Ion spillover 



We are thankful to Dr. Anke Hagen for helpful discussions and to the European IP Project REAL SOFC: SES 6 CT2003 for financial support.


  1. 1.
    Singhal SC (2000) Solid State Ion 135:305CrossRefGoogle Scholar
  2. 2.
    Zhu WZ, Deevi SC (2003) Mater Sci Eng A362:228Google Scholar
  3. 3.
    Kikuchi R, Eguchi K (2004) J Jpn Pet Inst 47(4):225CrossRefGoogle Scholar
  4. 4.
    Steele BCH (1996) Solid State Ion 86–88:1223CrossRefGoogle Scholar
  5. 5.
    Debenedetti PG, Vayenas CG (1983) Chem Eng Sci 38(11):1817–1829CrossRefGoogle Scholar
  6. 6.
    Vayenas CG, Debenedetti PG, Yentekakis Y, Hegedus LL (1985) Ind Eng Chem Fundam 24:316–324CrossRefGoogle Scholar
  7. 7.
    Michaels JN, Vayenas CG, Hegedus LL (1986) J Electrochem Soc 133(3):522–525CrossRefGoogle Scholar
  8. 8.
    Costamagna P, Selimovic A, Del Borghi M, Agnew G (2004) Chem Eng J 102:61–69CrossRefGoogle Scholar
  9. 9.
    Bieberle A, Gauckler LJ (2002) Solid State Ion 146:23–41CrossRefGoogle Scholar
  10. 10.
    Chan SH, Low CF, Ding OL (2002) J Power Sources 103:188–200CrossRefGoogle Scholar
  11. 11.
    Ackmann T, de Haart GJ, Lehnert W, Stolten D (2003) J Electrochem Soc 150(6):A783–A789CrossRefGoogle Scholar
  12. 12.
    Li P-W, Suzuki K (2004) J Electrochem Soc 151(4):A548–A557CrossRefGoogle Scholar
  13. 13.
    Mandin P, Bernay C, Tran-Dac S, Broto A, Abes D, Cassir M (2006) Fuel Cells 06 1:71–78CrossRefGoogle Scholar
  14. 14.
    Bessler WG (2005) Solid State Ion 176:997–1011CrossRefGoogle Scholar
  15. 15.
    Schneider LCR, Martin CL, Bultel Y, Bouvard D, Siebert E (2006) Electrochim Acta 52:314–324CrossRefGoogle Scholar
  16. 16.
    Hussain MM, Li X, Dincer I (2006) J Power Sources 161:1012–1022CrossRefGoogle Scholar
  17. 17.
    Williford RE, Chick LA, Maupin GD, Simner SP (2003) J Electrochem Soc 150(8):A1067–A1072CrossRefGoogle Scholar
  18. 18.
    Zhdanov VP (2003) Phys Rev E 67:042601–042604CrossRefGoogle Scholar
  19. 19.
    Williford RE, Chick LA (2003) Surf Sci 547:421–437CrossRefGoogle Scholar
  20. 20.
    Repetto L, Agnew G, Del Borghi A, Di Benedetto F, Costamagna P (2007) J Fuel Cell Sci Technol (in press)Google Scholar
  21. 21.
    Yakabe H, Hishinuma M, Uratani M, Matsuzaki Y, Yasuda I (2000) J Power Sources 86:423–431CrossRefGoogle Scholar
  22. 22.
    Mizusaki J, Tagawa H, Isobe K, Tajika M, Koshiro I, Maruyama H, Hirano K (1994) J Electrochem Soc 141(8):1674CrossRefGoogle Scholar
  23. 23.
    Zhdanov VP (2003) Phys Rev E 67:042601CrossRefGoogle Scholar
  24. 24.
    Williford RE, Chick LA, Maupin GD, Simner SP, Stevenson JW (2003) J Electrochem Soc 150(8):A1067CrossRefGoogle Scholar
  25. 25.
    Williford RE, Chick LA (2003) Surf Sci 547:421CrossRefGoogle Scholar
  26. 26.
    Vayenas CG, Jaksic MM, Bebelis S, Neophytides SG (1996) In: Bockris JOM, Conway BE, White RE (eds) Modern aspects of electrochemistry, vol. 29. Kluwer, New York, p 57Google Scholar
  27. 27.
    Vayenas CG, Bebelis S, Ladas S (1990) Nature 343:625CrossRefGoogle Scholar
  28. 28.
    Wieckowski A, Savinova E, Vayenas CG (2003) In: Catalysis and electrocatalysis at nanoparticles. Marcel Dekker, New YorkGoogle Scholar
  29. 29.
    Janek J, Luerßen B, Mutoro E, Fischer H, Günther S (2006) Top Catal (in press)Google Scholar
  30. 30.
    Vayenas CG, Bebelis S, Pliangos C, Brosda S, Tsiplakides D (2001) Electrochemical activation of catalysis: promotion, electrochemical promotion and metal-support interactions. Kluwer, New YorkGoogle Scholar
  31. 31.
    Riess I, Vayenas CG (2003) Solid State Ion 159(3–4):313–329CrossRefGoogle Scholar
  32. 32.
    Abe H, Murata K, Fukui T, Moon W-J, Kaneko K, Naito M (2006) Thin Solid Films 496:49–52CrossRefGoogle Scholar
  33. 33.
    Visco SS, De Jonghe LC (1997) J Electrochem Soc 144(3):L35–L37CrossRefGoogle Scholar
  34. 34.
    Fukui T, Murata K, Ohara S, Abe H, Naito M, Nogi K (2004) J Power Sources 125:17–21CrossRefGoogle Scholar
  35. 35.
    Kawada T, Sakai N, Yokokawa H, Dokiya M, Mori M, Iwata T (1990) J Electrochem Soc 137(10):3042–3047CrossRefGoogle Scholar
  36. 36.
    Carrillo AS, Tagawa T, Goto S (2001) Mater Res Bull 36:1017–1027CrossRefGoogle Scholar
  37. 37.
    Tietz F, Buchkremer H-P, Stöver D (2002) Solid State Ion 152–153:373–381CrossRefGoogle Scholar
  38. 38.
    Marinšek M, Zupan K, Maèek J (2002) J Power Sources 106:178–188CrossRefGoogle Scholar
  39. 39.
    Eguchi K, Kojo H, Takeguchi T, Kikuchi R, Sasaki K (2002) Solid State Ion 152–153:411CrossRefGoogle Scholar
  40. 40.
    Yentekakis IV, Jiang Y, Neophytides S, Bebelis S, Vayenas CG (1995) Ionics 1:491CrossRefGoogle Scholar
  41. 41.
    Bowden FB, Rideal E (1928) Proc Roy Soc A 120:59CrossRefGoogle Scholar
  42. 42.
    Smith JM (1981) Chemical engineering kinetics, 3rd edn. McGraw-Hill, New YorkGoogle Scholar
  43. 43.
    Froment GF, Bischoff KB (1979) Chemical reactor analysis and design. Wiley, New YorkGoogle Scholar
  44. 44.
    Vayenas CG, Pitselis GE (2001) Ind Eng Chem Res 40:4209CrossRefGoogle Scholar
  45. 45.
    Perusin S, Monceau D, Andrieu E (2005) J Electrochem Soc 152(12):E390CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Department of Chemical Engineering, Laboratory of Chemical and Electrochemical ProcessesUniversity of PatrasPatrasGreece

Personalised recommendations