Skip to main content
Log in

Ionic conduction and effect of cation doping in Tl4HgI6

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The ionic conduction properties of undoped and doped Tl4HgI6 were investigated using electrical conductivity, dielectrics, differential scanning calorimetry, and X-ray diffraction techniques. The heavy Tl+-ions diffusion was activated at high temperature, whereas low conductivity at the lower temperature suggested electronic contribution in undoped Tl4HgI6. The partial replacement of heavy Tl+ ion by suitable cations (Ag+ and Cu+) enhanced the conductivity by several orders of magnitude, whereas diminution in conductivity results with increasing dopants’ concentration in Tl4HgI6. These results can be interpreted in terms of a lattice contraction and vacancy–vacancy interaction (leading to the cluster formation), respectively. The dielectric values of undoped Tl4HgI6 system gradually increasing with temperature, followed by a sharp change, were observed around 385 K and can be explained on the basis of increasing number of space charge polarization and ions jump orientation effects. The activation energy of undoped and doped Tl4HgI6 systems were calculated, and it was found that ionic conductivity activation energy for 5 mol% of cation dopants is much lower than that of undoped one, and also 10 mol% doped Tl4HgI6 systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sharma UMG, Secco EA (1987) Solid State Ionics 1205:65

    Google Scholar 

  2. Huart J (1965) Bull Soc Fr Mineral Cristallogr 86:66

    Google Scholar 

  3. Huart J (1965) Bull Soc Fr Mineral Cristallogr 88:669

    Google Scholar 

  4. Huart J, Durif A (1963) C. R. Acad Sci 257:657

    CAS  Google Scholar 

  5. Berthold J, Hass D, Tamme R, Jenson KP, Messer D, Theile (1979) Z Anorg Allg Chem 456:29

    Article  CAS  Google Scholar 

  6. Gool WV (1974) Annu Rev Mater Sci 4:311

    Article  Google Scholar 

  7. Huang P, Secco EA (1993) J Solid State Chem 103:314

    Article  CAS  Google Scholar 

  8. Neelakanta PS (1993) Electrical engineering hand book. CRC, Boca Raton FL

    Google Scholar 

  9. Nagaase H, Furukawn Y, Nakamura D (1990) Bull Chem Soc Jpn 63:3329

    Article  Google Scholar 

  10. Nair SM, Yahya AI, Rafiuddin, Ahmad A (1996) Solid State Ionics 86–88:137

    Article  Google Scholar 

  11. Huang P, Secco EA (1993) J Solid State Chem 103:314

    Article  CAS  Google Scholar 

  12. Ammlung RL, Scaringe RP, Ibers JA, Schriver DF, Whitmore DH (1977) J Solid State Chem 21:185

    Article  CAS  Google Scholar 

  13. Ammlung RL, Shriver DF, Kamimoto M, Whitmore DH (1979) J Solid State Chem 29:401

    Article  CAS  Google Scholar 

  14. Symth CP (1955) Dielectric behavior and structure. McGraw-Hill, New York

    Google Scholar 

  15. Subbaalakshmi P, Veeraiah N (2002) Mater Lett 56:880

    Article  Google Scholar 

  16. Tareev B (1979) Physics of dielectric materials. Mir, Moscow

    Google Scholar 

  17. Samra GA (1984) Solid State Phys 18:1

    Article  Google Scholar 

  18. Maier J, Prill S, Reichart B (1988) Solid State Ionics 28–30:1465

    Article  Google Scholar 

  19. Kumar AVR, Reddy MR, Veeraiah N (1995) Phys Status Solidi 147:607

    Google Scholar 

  20. Nair SM, Yahya AI, Ahmad A (1996) J Solid State Chem 122:349

    Article  CAS  Google Scholar 

  21. Nair SM, Ahmad A (1997) J Phys Chem Solids 58(2):331

    Article  CAS  Google Scholar 

  22. Beeken RB, Haase AT, Hoerman BH, Sulzer SE (1996) Solid State Ionics 86–88:83

    Article  Google Scholar 

  23. Shannon RD (1976) Acta Crystallogr A32:751

    CAS  Google Scholar 

  24. Singh K, Anwane SW, Bhoga SS (1996) Solid State Ionics 86–88:187

    Article  Google Scholar 

  25. Lu Y, Secoo EA (1995) J Solid State Chem 114:271

    Article  CAS  Google Scholar 

  26. Singh K, Pande SM, Bhoga SS (1995) J Solid State Chem 116:232

    Article  CAS  Google Scholar 

  27. Gavartin JL, Shluger AL, Catlow CRA (1993) J Phys Condens Matter 5:7397

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges the chairman of the Department of Chemistry for providing research facilities. We also thank Prof and Chairman Wen Bin Liau, Department of Materials Science and Engineering, National Taiwan University, Taiwan for DSC of our samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafiuddin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nawaz, M.S., Rafiuddin Ionic conduction and effect of cation doping in Tl4HgI6 . Ionics 13, 35–40 (2007). https://doi.org/10.1007/s11581-007-0069-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-007-0069-z

Keywords

Navigation