Appendix
Proof of Lemma 1
As there is no arbitrage, there exists a unique risk-neutral measure \( \mathrm {P}^* \). It follows from Girsanov’s theorem that process \( B^*_t \) defined by
$$\begin{aligned} B^*_t = B_t + \int _0^t \varLambda _s\,ds \end{aligned}$$
(95)
is a standard Brownian motion under \( \mathrm {P}^* \). Then, the SDE for \( X_t \) under \( \mathrm {P}^* \) is rewritten as
$$\begin{aligned} dX_t= & {} - ( \mathscr {K} X_t + \varLambda _t )\,dt + I_N \,dB^*_t \\= & {} - \bigl ( \lambda + ( \mathscr {K} + \varLambda ) X_t \bigr )\,dt + I_N\,dB^*_t. \end{aligned}$$
First, we consider the case of nominal bond \( P^T_t \). As \( P^T_T = 1 \), \( P^T_t \) is written as
$$\begin{aligned} P^T_t = \mathrm {E}^*_t \left[ \exp \left( - \int ^T_{t} r_s\,ds \right) \right] , \end{aligned}$$
(96)
where \(\mathrm {E}^*\) is the expectation operator under \( \mathrm {P}^* \).
Because \( r_t \) is a function of \( X_t \), \( P^T_t \) is expressed as a smooth function f of \( (X_t, t) \).
$$\begin{aligned} P^T_t = f(X_t,t), \end{aligned}$$
(97)
and it follows from Feynman–Kac’s formula that f is a solution to the following PDE:
$$\begin{aligned}&f_t + \bigl ( - \lambda - ( \mathscr {K} + \varLambda ) X_t \bigr )' f_X+ \frac{1}{2} \mathrm {tr} [ f_{XX} ] - \left( \rho _0 + \rho ' X_t + \frac{1}{2} X'_t \mathscr {R} X_t \right) f = 0, \nonumber \\&f(X_T,T) = 1. \end{aligned}$$
(98)
As the PDE above is a second-order linear equation, the solution f is expressed as
$$\begin{aligned}&f(X_t, t) = \exp \left( \sigma _0(\tau ) + \sigma (\tau )' X_t + \frac{1}{2} X'_t \varSigma (\tau ) X_t \right) , \nonumber \\&(\sigma _0(0), \sigma (0), \varSigma (\tau )) = (0, 0, 0), \end{aligned}$$
(99)
where \( \sigma _0(\tau ), \sigma (\tau ) \), and \( \varSigma (\tau ) \) are smooth functions of \( \tau = T-t \) and \( \varSigma (\tau ) \) is a symmetric matrix. It should be noted that \( \varSigma (\tau )' = \varSigma (\tau ) \) and
$$\begin{aligned} X'_t ( \mathscr {K} + \varLambda )' \varSigma (\tau ) X_t = X'_t \varSigma (\tau ) ( \mathscr {K} + \varLambda ) X_t. \end{aligned}$$
By differentiating Eq. (99) and by inserting the result into Eq. (98), we have
$$\begin{aligned}&- \frac{d\sigma _0(\tau )}{d\tau } - X'_t \frac{d\sigma (\tau )}{d\tau } - \frac{1}{2} X'_t \frac{d\varSigma (\tau )}{d\tau } X_t - \lambda ' ( \sigma (\tau ) + \varSigma (\tau ) X_t) - X'_t ( \mathscr {K} + \varLambda )' \sigma (\tau )\nonumber \\&\quad -\frac{1}{2} X'_t ( \mathscr {K} + \varLambda )' \varSigma (\tau ) X_t -\frac{1}{2} X'_t \varSigma (\tau ) ( \mathscr {K} + \varLambda ) X_t + \frac{1}{2} \bigl ( \sigma (\tau )' \sigma (\tau ) + \mathrm {tr} [\varSigma (\tau )] \bigr ) \nonumber \\&\quad + X'_t \varSigma (\tau ) \sigma (\tau ) + \frac{1}{2} X'_t \varSigma (\tau )^2 X_t - \left( \rho _0 + \rho ' X_t + \frac{1}{2} X'_t \mathscr {R} X_t \right) = 0. \end{aligned}$$
(100)
Because the equation above is identical on \( X_t \), Eqs. (21)–(23) are obtained. By differentiating Eq. (99), we obtain SDE (33).
In the case of inflation-indexed bond \(P^T_{It} \), we define an equivalent probability measure \( \bar{\mathrm {P}} \) by the following Radon-Nikodym derivative with respect to \(\mathrm {P}^*\):
$$\begin{aligned} \frac{d\bar{\mathrm {P}}\,\,}{d\mathrm {P}^*} = \exp \left( - \frac{1}{2} \int ^{T^*}_0 (-\varLambda _{Is})'(-\varLambda _{Is})\,ds - \int ^{T^*}_0 (-\varLambda '_{Is})\,dB^*_s \right) . \end{aligned}$$
Then, it follows by Girsanov’s theorem that a process \( {\bar{B}}_t \) defined by
$$\begin{aligned} {\bar{B}}_t = B^*_t - \int _0^t \varLambda _{Is}\,ds \end{aligned}$$
(101)
is a standard Brownian motion under \( \bar{\mathrm {P}} \), and the SDE for \( X_t \) under \( \bar{\mathrm {P}} \) is rewritten as
$$\begin{aligned} dX_t= & {} - ( \mathscr {K} X_t + \varLambda _t - \varLambda _{It} )\,dt + I_N \,d{\bar{B}}_t \\= & {} - \bigl ( {\bar{\lambda }} + ( \mathscr {K} + {\bar{\varLambda }} \bigr ) X_t )\,dt + I_N\,d{\bar{B}}_t. \end{aligned}$$
Thus, \(P^T_{It} \) is calculated as
$$\begin{aligned} \begin{aligned} P^T_{It}&= E^*_t \left[ \exp \left( - \int ^T_{t} r_s \,ds\right) p_T \right] \\&= p_t \mathrm {E}^*_t \left[ \exp \left( - \int ^T_{t} \left( r_s - i_s + \frac{1}{2} \varLambda '_{Is} \varLambda _{Is} \right) \,ds + \int ^T_{t} \varLambda '_{Is} dB_s \right) \right] \\&= p_t \mathrm {E}^*_t \left[ \exp \left( - \int ^T_{t} \left( r_s - i_s + \frac{1}{2} \varLambda '_{Is}\varLambda _{Is} + \varLambda '_{Is} \varLambda _s \right) \,ds + \int ^T_{t} \varLambda '_{Is} dB^*_s \right) \right] \\&= p_t \mathrm {E}^*_t \left[ \exp \left( - \int ^T_{t} \left( r_s - i_s + \varLambda '_{Is} \varLambda _s \right) \,ds \right) \left( \frac{d\bar{\mathrm {P}}\,\,}{d\mathrm {P}^*} \right) _t \right] \\&= p_t \bar{\mathrm {E}}_t \left[ \exp \left( - \int ^T_{t} {\bar{r}}_s \,ds \right) \right] , \end{aligned}\qquad \end{aligned}$$
(102)
where \(\bar{\mathrm {E}}\) is the expectation operator under \( \bar{\mathrm {P}} \). Because all of the processes \( r_t, i_t, \varLambda '_{It} \), and \(\varLambda _t \) are functions of \( X_t \), the real price of \( P^T_{It} \) is expressed as a smooth function \( f(X_t,t) \)
$$\begin{aligned} \frac{P^T_{It}}{p_t} = f(X_t,t), \end{aligned}$$
(103)
and it follows from Feynman–Kac’s formula that f is a solution to the following PDE:
$$\begin{aligned}&f_t - \big ( {\bar{\lambda }} + ( \mathscr {K} + {\bar{\varLambda }} ) X_t \bigr )' f_X+ \frac{1}{2} \mathrm {tr} [ f_{XX} ] - \left( {\bar{\rho }}_0 + {\bar{\rho }}' X_t + \frac{1}{2} X'_t \bar{\mathscr {R}} X_t \right) f = 0,\nonumber \\&f(X_T,T) = 1. \end{aligned}$$
(104)
Hence, f is expressed as
$$\begin{aligned}&f(X_t,t) = \exp \left( \sigma _{I0}(\tau ) + \sigma _I(\tau )' X_t + \frac{1}{2} X'_t \varSigma _I(\tau ) X_t \right) ,\nonumber \\&(\sigma _{I0}(0), \sigma _I(0), \varSigma _I(\tau ) ) = (0, 0, 0), \end{aligned}$$
(105)
where \( \sigma _{I0}(\tau ), \sigma _I(\tau ) \), and \( \varSigma _I(\tau ) \) are smooth functions and \( \varSigma _I(\tau ) \) is a symmetric matrix. It should be noted that \( \varSigma _I(\tau )' = \varSigma _I(\tau ) \) and
$$\begin{aligned} X'_t ( \mathscr {K} + {\bar{\varLambda }})' \varSigma _I(\tau ) X_t = X'_t \varSigma _I(\tau ) ( \mathscr {K} + {\bar{\varLambda }}) X_t. \end{aligned}$$
By differentiating Eq.(105) and by inserting the result into Eq.(104), the following equation is obtained:
$$\begin{aligned}&- \frac{d\sigma _{I0}(\tau )}{d\tau } - X'_t \frac{d\sigma _I(\tau )}{d\tau } - \frac{1}{2} X'_t \frac{d\varSigma _I(\tau )}{d\tau } X_t - {\bar{\lambda }}' ( \sigma _I(\tau ) + \varSigma _I(\tau ) X_t) - X'_t ( \mathscr {K} + {\bar{\varLambda }})' \sigma _I(\tau )\nonumber \\&\quad -\frac{1}{2} X'_t ( \mathscr {K} + {\bar{\varLambda }})' \varSigma _I(\tau ) X_t -\frac{1}{2} X'_t \varSigma _I(\tau ) ( \mathscr {K} + {\bar{\varLambda }}) X_t + \frac{1}{2} \bigl ( \sigma _I(\tau )' \sigma _I(\tau ) + \mathrm {tr} [\varSigma _I(\tau )] \bigr ) \nonumber \\&\quad + X'_t \varSigma _I(\tau ) \sigma _I(\tau ) + \frac{1}{2} X'_t \varSigma _I(\tau )^2 X_t - \left( {\bar{\rho }}_0 + {\bar{\rho }}' X_t + \frac{1}{2} X'_t \bar{\mathscr {R}} X_t \right) = 0. \end{aligned}$$
(106)
Note the following equation:
$$\begin{aligned} \frac{dP^T_{It}}{P^T_{It}} = \frac{dp_t}{p_t} + \frac{df(X_t,t)}{f(X_t,t)} + \frac{dp_t}{p_t} \frac{df(X_t,t)}{f(X_t,t)}. \end{aligned}$$
(107)
Therefore, we obtain Eqs. (25)–(27) and (34).
On the j-th index, Kikuchi [26] proves that \( S^j_t \) is given by Eq. (28). Hence, the instantaneous dividend rate process is
$$\begin{aligned} \frac{D^j_{t}}{S^j_t} = \delta _{0j} + \delta '_{j} X_t + \frac{1}{2} X'_t \varDelta _j X_t. \end{aligned}$$
(108)
In a similar way, the following identical equation on \( X_t \) is obtained from Eqs. (28) and (108).
$$\begin{aligned}&\sigma _{0j} - \lambda ' (\sigma _j + \varSigma _j X_t) - X'_t (\mathscr {K} + \varLambda )' \sigma _j - \frac{1}{2} X'_t (\mathscr {K} + \varLambda )' \varSigma _j X_t - \frac{1}{2} X'_t \varSigma _j (\mathscr {K} + \varLambda ) X_t\nonumber \\&\quad + \frac{1}{2} \bigl (\sigma '_j \sigma _j + \mathrm {tr}[\varSigma _j]\bigr ) + X'_t \varSigma _j \sigma _j + \frac{1}{2} X'_t \varSigma ^2_j X_t \nonumber \\&\quad +\left( \delta _{0j} - \rho _0 + (\delta _j - \rho )' X_t + \frac{1}{2} X'_t (\varDelta _j - \mathscr {R})X_t \right) = 0. \end{aligned}$$
(109)
Therefore, we obtain Eqs. (29)–(31) and (35).
Proof of Lemma 2
Let \( (\vartheta , (\vartheta (\tau )), (\vartheta ^I(\tau )), (\vartheta ^{j})) \) denote a portfolio. The nominal wealth \( p_t W_t \) is given by
$$\begin{aligned} p_t W_t = \vartheta _t P_t + \int _0^{\tau ^*} \bigl (\vartheta _t(\tau ) P_t(\tau ) + \vartheta ^I_t(\tau ) P_{It}(\tau )\bigr ) d\tau + \sum _{j=1}^J \vartheta ^{j}_t S^{j}_t. \end{aligned}$$
Then, given \( c_t \), the self-financing portfolio \( (\vartheta , (\vartheta (\tau )), (\vartheta ^I(\tau )), (\vartheta ^{j})) \) satisfies
$$\begin{aligned} \begin{aligned} \frac{d(p_tW_t)}{p_tW_t}&= \frac{1}{p_tW_t} \Biggl \{ \vartheta _t dP_t + \int _0^{\tau ^*} \bigl ( \vartheta _t(\tau )dP_t(\tau ) + \vartheta ^I_t(\tau )dP_{It}(\tau ) \bigr )d\tau \\&\quad + \sum _{j=1}^J \vartheta ^{j}_t \Bigl ( dS^{j}_t + D^{j}_t dt \Bigr ) - p_t c_t dt \Biggr \} \\&= \frac{\vartheta _t P_t}{p_tW_t} \frac{dP_t}{P_t} + \int _0^{\tau ^*} \left( \frac{\vartheta _t(\tau )P_t(\tau )}{p_tW_t} \frac{dP_t(\tau )}{P_t(\tau )} + \frac{\vartheta ^I_t(\tau )P_{It}(\tau )}{p_tW_t} \frac{dP_{It}(\tau )}{P_{It}(\tau )} \right) d\tau \\&\quad + \sum _{j=1}^J \frac{\vartheta ^{j}_t S^{j}_t}{p_tW_t} \frac{dS^{j}_t + D^{j}_t dt}{S^{j}_t} - \frac{c_t}{W_t} dt \\&= \Biggl ( 1 - \int _0^{\tau ^*}\bigl ( \varphi _t(\tau ) + \varphi ^I_t(\tau ) \bigr )d\tau - \sum _{j=1}^J \varPhi ^j_t \Biggr ) \frac{dP_t}{P_t}\\&\quad + \int _0^{\tau ^*} \left( \varphi _t(\tau ) \frac{dP_t(\tau )}{P_t(\tau )} + \varphi ^I_{t}(\tau ) \frac{dP_{It}(\tau )}{P_{It}(\tau )} \right) d\tau \\&\quad + \sum _{j=1}^J \varPhi ^j_t \frac{dS^{j}_t + D^{j}_t dt}{S^{j}_t} - \frac{c_t}{W_t} dt. \end{aligned} \end{aligned}$$
Substituting Eqs. (32)–(36) into the equation above yields
$$\begin{aligned} \frac{d(p_tW_t)}{p_tW_t} = \left( r_t + (\varPsi _t + \varLambda _{It})'\varLambda _t - \frac{c_t}{W_t} \right) \,dt + (\varPsi _t + \varLambda _{It})'\,dB_t. \end{aligned}$$
(110)
Noting that
$$\begin{aligned} \frac{d(p_tW_t)}{p_tW_t} = \frac{dW_t}{W_t} + \frac{dp_t}{p_t} + \frac{dW_t}{W_t} \frac{dp_t}{p_t}, \end{aligned}$$
and that the volatility of \( W_t \) is equal to \( \varPsi _t \), we get
$$\begin{aligned} \frac{dW_t}{W_t} = \frac{d(p_tW_t)}{p_tW_t} - i_t dt - \varLambda '_{It} dB_t - \varPsi '_t \varLambda _{It}\,dt. \end{aligned}$$
By inserting Eq. (110) into the equation above, we obtain Eq. (37).
Proof of Proposition 1
First, using Eq. (41), optimal consumption control (51) is obtained as follows:
$$\begin{aligned} c^*_t = \alpha ^{\frac{1}{\gamma }} e^{-\frac{\beta }{\gamma } t} J^{-\frac{1}{\gamma }}_W = \alpha ^{\frac{1}{\gamma }} e^{-\frac{\beta }{\gamma }t} \left\{ e^{-\beta t} (W^*_t)^{-\gamma } G^{\gamma } \right\} ^{-\frac{1}{\gamma }} = \alpha ^{\frac{1}{\gamma }} \frac{W^*_t}{G}. \end{aligned}$$
Then, by inserting \( c^*_t \) into budget constraint (37) and by solving the SDE, we obtain Eq. (52).
Second, the derivatives of J are given by
$$\begin{aligned} \begin{aligned} J_t&= -\beta J + \gamma J \frac{G_t}{G}, \quad \quad W J_W = (1-\gamma ) J, \quad \quad J_X=\gamma \,J \frac{G_X}{G},\\ W^2 J_{WW}&= -\gamma (1-\gamma )J,\quad \quad W J_{XW} = \gamma (1-\gamma ) J \frac{G_X}{G},\\ J_{XX}&= \gamma \,J \left\{ (\gamma -1) \frac{G_X}{G} \frac{G'_X}{G} + \frac{G_{XX}}{G} \right\} . \end{aligned} \end{aligned}$$
Then, the numerator and the denominator on the right-hand side of Eq. (42) are rewritten as
$$\begin{aligned}&\pi _t = (\gamma -1) J\left( {\bar{\varLambda }}_t + \gamma \frac{G_X}{G} \right) , \end{aligned}$$
(111)
$$\begin{aligned}&W^2_t J_{WW} = \gamma (\gamma -1) J. \end{aligned}$$
(112)
Therefore, by inserting Eqs. (111) and (112) into Eq. (42), we obtain equation (53). The second and third terms in PDE (49) are calculated from Eqs. (111) and (112) as
$$\begin{aligned}&\frac{1}{2} \,\mathrm {tr}\left[ J_{XX} \right] - \frac{\pi '_t \pi _t}{2W^2_t J_{WW}} \nonumber \\&\quad = \frac{\gamma }{2} J\,\mathrm {tr}\left[ \left\{ (\gamma -1) \frac{G_X}{G} \frac{G'_X}{G} + \frac{G_{XX}}{G} \right\} \right] - \frac{\gamma -1}{2\gamma } J \left( {\bar{\varLambda }}_{t} + \gamma \frac{G_X}{G} \right) ' \left( {\bar{\varLambda }}_{t} + \gamma \frac{G_X}{G} \right) \nonumber \\&\quad = J \left\{ \frac{\gamma }{2} \,\mathrm {tr} \left[ \frac{G_{XX}}{G} \right] - \frac{\gamma -1}{2\gamma } {\bar{\varLambda }}'_t {\bar{\varLambda }}_t - (\gamma -1) {\bar{\varLambda }}'_t \frac{G_X}{G} \right\} . \end{aligned}$$
(113)
The sixth term in PDE (49) is calculated from Eq. (51) as
$$\begin{aligned} \frac{\gamma }{1-\gamma } c^*_t J_W = \frac{\gamma }{1-\gamma } \alpha ^{\frac{1}{\gamma }} \frac{W^*_t}{G} (1-\gamma ) \frac{J}{G} = \gamma \alpha ^{\frac{1}{\gamma }} \frac{J}{G}. \end{aligned}$$
(114)
Substituting Eqs. (113) and (114) into Eq. (49) and dividing by \( \gamma J/G \) yield Eq. (54).
Proof of Proposition 2
By substituting Eqs. (58) and (63) into Eqs. (51) and (53), respectively, we obtain Eqs. (66) and (67). It is straightforward to see that \( a_0(\tau ) \) and \( a(\tau ) \) are expressed as Eqs. (68) and (69), respectively.
Following Theorem 5.2 in Arimoto [3], we prove that \( A(\tau ) \) is a unique symmetric solution to matrix differential Riccati equation (70). We consider the following initial value problem of the linear ODE for the \( N \times N \) matrix-value functions \( C_1(\tau ) \) and \( C_2(\tau ) \):
$$\begin{aligned} \frac{d}{d\tau } \begin{pmatrix}C_1(\tau ) \\ C_2(\tau ) \end{pmatrix}= \begin{pmatrix}L &{} - I_N \\ -Q &{} -L' \end{pmatrix}\begin{pmatrix}C_1(\tau ) \\ C_2(\tau ) \end{pmatrix}, \quad \quad \quad \begin{pmatrix}C_1(0) \\ C_2(0) \end{pmatrix}= \begin{pmatrix}I_N \\ 0_N \end{pmatrix}, \end{aligned}$$
(115)
where
$$\begin{aligned} L = \mathscr {K} + \frac{\gamma -1}{\gamma } {\bar{\varLambda }}, \quad \quad Q = \frac{\gamma -1}{\gamma } \left( \frac{1}{\gamma } {\bar{\varLambda }}' {\bar{\varLambda }} + \bar{\mathscr {R}} \right) . \end{aligned}$$
A solution to Eq.(115) is given by Eq. (71). As we can prove that \( C_1(\tau ) \) is regular,Footnote 13 we define \( A(\tau ) \) by Eq. (70). Subsequently, considering that
$$\begin{aligned} \frac{d}{d\tau } C_1^{-1}(\tau ) = - C_1^{-1}(\tau ) \left\{ \frac{d}{d\tau } C_1(\tau ) \right\} C_1^{-1}(\tau ), \end{aligned}$$
(116)
we can derive
$$\begin{aligned} \frac{d}{d\tau } A(\tau )= & {} \left\{ \frac{d}{d\tau } C_2(\tau ) \right\} C_1^{-1}(\tau ) + C_2(\tau ) \frac{d}{d\tau } C_1^{-1}(\tau ) \\= & {} \left( -Q C_1(\tau ) - L' C_2(\tau ) \right) C^{-1}_1(\tau ) - A(\tau ) \left( L C_1(\tau ) - C_2(\tau ) \right) C^{-1}_1(\tau ) \\= & {} A(\tau )^2 - L' A(\tau ) - A(\tau ) L - Q, \end{aligned}$$
and thus confirm that \( A(\tau ) \) satisfies matrix differential Riccati equation (62). For the uniqueness of solution to the Riccati equation, see the proof of Theorem 5.2 in Arimoto [3]. Finally, for the symmetry of \( A(\tau ) \), taking the transposition of Riccati equation (62) for \( A (\tau ) \) yields the same equation for \( A(\tau )' \), which implies that \( A(\tau )' = A(\tau ) \) due to the uniqueness of the solution to the Riccati equation.
Proof of Lemma 3
First, Eq. (1) can be transformed as follows.
$$\begin{aligned} d \bigl (e^{t\mathscr {K}} X_t\bigr ) = e^{t\mathscr {K}}\, dB_t. \end{aligned}$$
(117)
Integrating the above equation over the interval \( [n \varDelta , (n + 1)\varDelta ] \), we obtain the following equation.
$$\begin{aligned} e^{(n+1)\varDelta \mathscr {K}} X_{(n+1)\varDelta } - e^{n \varDelta \mathscr {K}} X_{n \varDelta } = \int _{n \varDelta }^{(n+1)\varDelta } e^{s \mathscr {K}}\,dB_s. \end{aligned}$$
(118)
Dividing both sides of the above equation by \( e^{(n+1)\varDelta \mathscr {K}} \), we get Eq.(74). By definition of yield-to-maturity, the following holds:
$$\begin{aligned} \begin{aligned} s_t(\tau )&= - \frac{1}{\tau } \log P_t(\tau ), \\ s^I_t(\tau )&= - \frac{1}{\tau } \log P_{It}(\tau ). \end{aligned} \end{aligned}$$
(119)
Thus, Eq.(75) follows from Eqs.(20), (24), (28), and (119).