Skip to main content

Price formation and optimal trading in intraday electricity markets


We develop a tractable equilibrium model for price formation in intraday electricity markets in the presence of intermittent renewable generation. Using stochastic control theory, we identify the optimal strategies of agents with market impact and exhibit the Nash equilibrium in closed form for a finite number of agents as well as in the asymptotic framework of mean field games. Our model reproduces the empirical features of intraday market prices, such as increasing price volatility at the approach of the delivery date and the correlation between price and renewable infeed forecasts, and relates these features with market characteristics like liquidity, number of agents, and imbalance penalty.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Availability of data and material

The electricity price data used in the paper is available from EPEX Spot ( on a subscription basis.


  1. See for details.


  1. Aid, R., Cosso, A., Pham, H.: Equilibrium price in intraday electricity markets (2020). arXiv preprint arXiv:2010.09285

  2. Aïd, R., Gruet, P., Pham, H.: An optimal trading problem in intraday electricity markets. Math. Financ. Econ. 10(1), 49–85 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  3. Almgren, R., Chriss, N.: Value under liquidation. Risk 12(12), 61–63 (1999)

    Google Scholar 

  4. Almgren, R., Chriss, N.: Optimal execution of portfolio transactions. J. Risk 3, 5–40 (2001)

    Article  Google Scholar 

  5. Bacry, E., Iuga, A., Lasnier, M., Lehalle, C.A.: Market impacts and the life cycle of investors orders. Mark. Microstruct. Liq. 1(02), 1550009 (2015)

    Article  Google Scholar 

  6. Bank, P., Ekren, I., Muhle-Karbe, J.: Liquidity in competitive dealer markets (2018). arXiv preprint arXiv:1807.08278

  7. Bank, P., Soner, H.M., Voß, M.: Hedging with temporary price impact. Math. Financ. Econ. 11(2), 215–239 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  8. Bershova, N., Rakhlin, D.: The non-linear market impact of large trades: evidence from buy-side order flow. Quant. Finance 13(11), 1759–1778 (2013)

    MathSciNet  Article  Google Scholar 

  9. Bouchard, B., Fukasawa, M., Herdegen, M., Muhle-Karbe, J.: Equilibrium returns with transaction costs. Finance Stoch. 22(3), 569–601 (2018)

    MathSciNet  MATH  Article  Google Scholar 

  10. Bouchaud, J.P.: Price impact. Encyclopedia of quantitative finance (2010)

  11. Bucci, F., Mastromatteo, I., Eisler, Z., Lillo, F., Bouchaud, J.P., Lehalle, C.A.: Co-impact: crowding effects in institutional trading activity. Quant. Finance 20(2), 193–205 (2020)

    MathSciNet  MATH  Article  Google Scholar 

  12. Casgrain, P., Jaimungal, S.: Mean field games with partial information for algorithmic trading (2018). arXiv preprint arXiv:1803.04094

  13. Casgrain, P., Jaimungal, S.: Mean-field games with differing beliefs for algorithmic trading. Math. Finance 30(3), 995–1034 (2020)

    MathSciNet  MATH  Article  Google Scholar 

  14. Delikaraoglou, S., Papakonstantinou, A., Ordoudis, C., Pinson, P.: Price-maker wind power producer participating in a joint day-ahead and real-time market. In: 12th International Conference on the European Energy Market (EEM), pp. 1–5. IEEE (2015)

  15. Donier, J., Bonart, J., Mastromatteo, I., Bouchaud, J.P.: A fully consistent, minimal model for non-linear market impact. Quant. Finance 15(7), 1109–1121 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  16. Evangelista, D., Thamsten, Y.: Finite population games of optimal execution (2020). arXiv preprint arXiv:2004.00790

  17. Fu, G., Graewe, P., Horst, U., Popier, A.: A mean field game of optimal portfolio liquidation. Math. Oper. Res. (2021).

    MathSciNet  MATH  Article  Google Scholar 

  18. Fu, G., Horst, U.: Mean-field leader–follower games with terminal state constraint. SIAM J. Control Optim. 58(4), 2078–2113 (2020)

    MathSciNet  MATH  Article  Google Scholar 

  19. Fu, G., Horst, U., Xia, X.: Portfolio liquidation games with self-exciting order flow (2020). arXiv preprint arXiv:2011.05589

  20. Fujii, M., Takahashi, A.: A mean field game approach to equilibrium pricing with market clearing condition. CARF Working Paper CARF-F-473 (2020)

  21. Garnier, E., Madlener, R.: Balancing forecast errors in continuous-trade intraday markets. Energy Syst. 6(3), 361–388 (2015)

    Article  Google Scholar 

  22. Gatheral, J.: No-dynamic-arbitrage and market impact. Quant. Finance 10(7), 749–759 (2010)

    MathSciNet  MATH  Article  Google Scholar 

  23. Huberman, G., Stanzl, W.: Price manipulation and quasi-arbitrage. Econometrica 72(4), 1247–1275 (2004)

    MathSciNet  MATH  Article  Google Scholar 

  24. Jaeck, E., Lautier, D.: Volatility in electricity derivative markets: the Samuelson effect revisited. Energy Econ. 59, 300–313 (2016)

    Article  Google Scholar 

  25. Jónsson, T., Pinson, P., Madsen, H.: On the market impact of wind energy forecasts. Energy Econ. 32(2), 313–320 (2010)

    Article  Google Scholar 

  26. Karanfil, F., Li, Y.: The role of continuous intraday electricity markets: the integration of large-share wind power generation in Denmark. Energy J. 38(2), 107–130 (2017)

    Article  Google Scholar 

  27. Kiesel, R., Paraschiv, F.: Econometric analysis of 15-minute intraday electricity prices. Energy Econ. 64, 77–90 (2017)

    Article  Google Scholar 

  28. Kristensen, D.: Nonparametric filtering of the realized spot volatility: a kernel-based approach. Econom. Theory 26(1), 60–93 (2010)

    MathSciNet  MATH  Article  Google Scholar 

  29. Morales, J.M., Conejo, A.J., Pérez-Ruiz, J.: Short-term trading for a wind power producer. IEEE Trans. Power Syst. 25(1), 554–564 (2010)

    Article  Google Scholar 

  30. Rowińska, P.A., Veraart, A., Gruet, P.: A multifactor approach to modelling the impact of wind energy on electricity spot prices. Available at SSRN 3110554 (2018)

  31. Shrivats, A., Firoozi, D., Jaimungal, S.: A mean-field game approach to equilibrium pricing, optimal generation, and trading in solar renewable energy certificate (SREC) markets (2020). arXiv preprint arXiv:2003.04938

  32. Tan, Z., Tankov, P.: Optimal trading policies for wind energy producer. SIAM J. Financ. Math. 9(1), 315–346 (2018)

    MathSciNet  MATH  Article  Google Scholar 

  33. Voß, M.: A two-player price impact game (2019). arXiv preprint arXiv:1911.05122

  34. Zugno, M., Morales, J.M., Pinson, P., Madsen, H.: Pool strategy of a price-maker wind power producer. IEEE Trans. Power Syst. 28(3), 3440–3450 (2013)

    Article  Google Scholar 

Download references


The authors gratefully acknowledge financial support from the Agence Nationale de Recherche (project EcoREES ANR-19-CE05-0042) and from the FIME Research Initiative.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Peter Tankov.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Code availability

The code for the numerical simulations of the paper is available from the authors on request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors gratefully acknowledge financial support from the Agence Nationale de Recherche (project EcoREES ANR-19-CE05-0042) and from the FIME Research Initiative.



Proof of Theorem 1


Step 1. First order condition of optimality for a single agent In this step, we are going to show that for fixed \(\phi ^{-i*}\), the strategy \(\phi ^{i*}\) satisfies (4) if and only if \({\mathbb {E}}[\phi ^{i*}_T-X^i_T|{\mathcal {F}}_0]=0 \) and there exists a square integrable \({\mathbb {F}}\)-martingale \(Y^i\) such that, almost surely,

$$\begin{aligned}&Y^i_t + \alpha (t){\left\{ {{\dot{\phi }}}^{i*}_t\left( 1-\frac{b_N}{N}\right) + b_N\dot{{\bar{\phi }}}^{N*}_t\right\} } \nonumber \\&\qquad + S_t + a\big ({\bar{\phi }}^{N*}_t-{\bar{\phi }}^{N*}_0\big ) - \frac{a}{N}\big (\phi ^{i*}_t-\phi ^{i*}_0\big ) = 0,\ 0\le t\le T, \nonumber \\&Y^i_T = \frac{a}{N} \big (\phi ^{i*}_T-\phi ^{i*}_0\big ) + \lambda \big (\phi ^{i*}_T - X^i_T\big )-S_T, \end{aligned}$$

with the shorthand notation \(b_N = \frac{N}{N-1}\frac{b}{2}\). Assume that \(\phi ^{i*}\) satisfies (4). Then, for any adapted square integrable process \((\nu _t)_{0\le t\le T}\), and for any \(\delta \in {\mathcal {F}}_0\),

$$\begin{aligned} J^{N,i}\left( \phi ^{i*} +\delta + \int _0^\cdot \nu _s ds,\phi ^{-i*}\right) \le J^{N,i}\big (\phi ^{i*}, \phi ^{-i*}\big ). \end{aligned}$$

Developing the expressions, this is equivalent to

$$\begin{aligned}&{\mathbb {E}}\Big [\int _0^T \nu _t \Big \{\alpha (t){\Big [{{\dot{\phi }}}^{i*}_t\Big (1-\frac{b_N}{N}\Big ) + b_N\dot{{\bar{\phi }}}^{N*}_t\Big ] }+ S_t + a({\bar{\phi }}^{N*}_t-{\bar{\phi }}^{N*}_0) {- \frac{a}{N}\big (\phi ^{i*}_t-\phi ^{i*}_0\big )}\Big \}dt \\&\quad + \left( \frac{a}{N} \big (\phi ^{i*}_T-\phi ^{i*}_0\big ) + \lambda \big (\phi ^{i*}_T - X^i_T\big )-S_T\right) \int _0^T \nu _t dt +\lambda \big (\phi ^{i*}_T - X^i_T\big )\delta \Big ] \\&\quad +{\mathbb {E}}\Big [\frac{1}{2}\int _0^T \alpha (t)\nu _t^2 dt + \Big (\frac{a}{N} + \frac{\lambda }{2}\Big )\Big (\int _0^T \nu _t dt\Big )^2 + \frac{\lambda }{2}\delta ^2 \Big ] \ge 0,\nonumber \\ \end{aligned}$$

and since \(\nu \) and \(\delta \) are arbitrary, we see that optimality is equivalent to

$$\begin{aligned}&{\mathbb {E}}\Big [\int _0^T \nu _t \Big \{\alpha (t){\Big [{{\dot{\phi }}}^{i*}_t\Big (1-\frac{b_N}{N}\Big ) + b_N\dot{{\bar{\phi }}}^{N*}_t\Big ]} + S_t + a\big ({\bar{\phi }}^{N*}_t-{\bar{\phi }}^{N*}_0\big ) {- \frac{a}{N}\big (\phi ^{i*}_t-\phi ^{i*}_0\big )}\Big \}dt\nonumber \\&\quad + \Big (\frac{a}{N} \big (\phi ^{i*}_T-\phi ^{i*}_0\big )+ \lambda \big (\phi ^{i*}_T - X^i_T\big )-S_T\Big )\int _0^T \nu _t dt \Big ]=0, \end{aligned}$$

for any adapted square integrable \(\nu \), together with the condition that \({\mathbb {E}}[\phi ^{i*}_T - X^i_T|{\mathcal {F}}_0] = 0\). Now, assume that \(Y^i\) is a square integrable martingale satisfying (22). Then, by integration by parts, the expression in the previous line equals

$$\begin{aligned} {\mathbb {E}}\Big [-\int _0^T \nu _t Y_t dt + Y_T \int _0^T \nu _t dt\Big ] = {\mathbb {E}}\Big [\int _0^T \Big (\int _0^t \nu _s ds\Big )dY_t\Big ] = 0, \end{aligned}$$

and we see that the optimality condition is satisfied. Conversely, assume that (23) is satisfied for any adapted square integrable process \(\nu \), and let \(Y^i\) be a martingale such that

$$\begin{aligned} Y^i_T = \frac{a}{N} \big (\phi ^{i*}_T-\phi ^{i*}_0\big ) + \lambda \big (\phi ^{i*}_T - X^i_T\big )-S_T. \end{aligned}$$

Then, by integration by parts, (23) is equivalent to

$$\begin{aligned}&{\mathbb {E}}\Big [\int _0^T \nu _t \Big \{\alpha (t){\Big [{{\dot{\phi }}}^{i*}_t\Big (1-\frac{b_N}{N}\Big ) + b_N\dot{{\bar{\phi }}}^{N*}_t\big ] } \\&\quad + S_t + a\big ({\bar{\phi }}^{N*}_t-{\bar{\phi }}^{N*}_0\big ) {- \frac{a}{N}\big (\phi ^{i*}_t}-\phi ^{i*}_0\big )+ Y^i_t\Big \}dt\Big ] = 0, \end{aligned}$$

and since \(\nu \) is arbitrary, we see that (22) is satisfied.

Step 2. Computing the average position Let \((\phi ^{i*})_{i = 1, \dots , N}\) be a Nash equilibrium. We have seen that this is equivalent to (22) together with the condition that \({\mathbb {E}}[\phi ^{i*}_T - X^i_T|{\mathcal {F}}_0] = 0\) for \(i=1,\dots ,N\). Summing up these expressions for \(i=1,\dots ,N\) and denoting \({\overline{Y}}^N_t = \frac{1}{N}\sum _{i=1}^N Y^i_t\), we get

$$\begin{aligned}&{\overline{Y}}^N_t + \alpha (t){\Big (1+\frac{b}{2}\Big )}\dot{{\bar{\phi }}}^{N*}_t + S_t + a{\frac{N-1}{N}}\big ({\bar{\phi }}^{N*}_t-{\bar{\phi }}^{N*}_0\big ) = 0,\quad 0\le t\le T,\\&{\overline{Y}}^N_T = \frac{a}{N} \big ({\bar{\phi }}^{N*}_T-{\bar{\phi }}^{N*}_0\big ) + \lambda \big ({\bar{\phi }}^{N*}_T - {\overline{X}}^N_T\big )-S_T,\\&{\mathbb {E}}\big [{\bar{\phi }}^{N*}_T - {\overline{X}}^N_T|{\mathcal {F}}_0\big ] = 0. \end{aligned}$$

The first equation can be solved explicitly for \({\bar{\phi }}^{N*}\):

$$\begin{aligned} {\bar{\phi }}^{N*}_t ={\bar{\phi }}^{N*}_0 -\int _0^t \eta ^{N}_{s,t} \frac{{\overline{Y}}^N_s + S_s}{\alpha (s){\left( 1+\frac{b}{2}\right) }}ds. \end{aligned}$$

Denoting \({\hat{\phi }}_t: = {\bar{\phi }}^{N*}_t + I^N_t\), we obtain simplified equations:

$$\begin{aligned} {\hat{\phi }}_t&= {\bar{\phi }}^{N*}_0-\int _0^t \eta ^{N}_{s,t} \frac{{\overline{Y}}^N_s}{\alpha (s){\left( 1+\frac{b}{2}\right) }}ds,\\ {\overline{Y}}^N_T&= \left( \frac{a}{N} +\lambda \right) \big ({\hat{\phi }}_T-I^N_T\big ) -\frac{a}{N}{\bar{\phi }}_0^{N*} - \lambda {\overline{X}}^N_T-S_T. \end{aligned}$$

Substituting \({\hat{\phi }}_T\) into the second equation and taking the expectation, we obtain another linear equation, this time for \({\overline{Y}}^N_t\):

$$\begin{aligned} {\overline{Y}}^N_T&= -\left( \frac{a}{N} +\lambda \right) \int _0^T \eta ^{N}_{s,T} \frac{{\overline{Y}}^N_s}{\alpha (s){\left( 1+\frac{b}{2}\right) }}ds -\left( \frac{a}{N} +\lambda \right) I_T - \lambda {\overline{X}}^N_T + \lambda {\bar{\phi }}^{N*}_0-S_T,\\ {\overline{Y}}^N_t&= -\left( \frac{a}{N}+\lambda \right) \int _0^t {\overline{Y}}^N_s\frac{ \eta ^{N}_{s,T}}{\alpha (s){\left( 1+\frac{b}{2}\right) }} ds - \left( \frac{a}{N}+\lambda \right) \varDelta ^{N}_{t,T}{\overline{Y}}^N_t\\&- \left( \frac{a}{N}+\lambda \right) {{\widetilde{I}}}^N_t- \lambda {\overline{X}}^N_t+ \lambda {\bar{\phi }}^{N*}_0 - {{\widetilde{S}}}_t. \end{aligned}$$

By integration by parts, this is equivalent to

$$\begin{aligned} {\overline{Y}}^N_t =&-\left( \frac{a}{N}+\lambda \right) \int _0^t \varDelta ^{N}_{s,T}d{\overline{Y}}^N_s - \left( \frac{a}{N}+\lambda \right) \varDelta ^{N}_{0,T}{\overline{Y}}^N_0 \\&- \left( \frac{a}{N}+\lambda \right) {{\widetilde{I}}}_t- \lambda {\overline{X}}^N_t+ \lambda {\bar{\phi }}^{N*}_0 - {{\widetilde{S}}}_t. \end{aligned}$$

Taking \(t=0\), we get:

$$\begin{aligned} {\overline{Y}}^N_0=\frac{ - \left( \frac{a}{N}+\lambda \right) {{\widetilde{I}}}^N_0 - \lambda ({\overline{X}}^N_0- {\bar{\phi }}^{N*}_0)-{{\widetilde{S}}}_0}{1+\left( \frac{a}{N}+\lambda \right) \varDelta ^{N}_{0,T}} \end{aligned}$$

On the other hand, in differential form,

$$\begin{aligned} \left\{ 1+\left( \frac{a}{N}+\lambda \right) \varDelta ^{N}_{t,T}\right\} d{\overline{Y}}^N_t = - \left( \frac{a}{N}+\lambda \right) d{{\widetilde{I}}}^N_t - \lambda d{\overline{X}}^N_t-d{{\widetilde{S}}}_t, \end{aligned}$$

which is solved therefore explicitly by

$$\begin{aligned} {\overline{Y}}^N_t = \frac{ - \left( \frac{a}{N}+\lambda \right) {{\widetilde{I}}}^N_0 - \lambda \big ({\overline{X}}^N_0- {\bar{\phi }}^{N*}_0\big )-{{\widetilde{S}}}_0}{1+\left( \frac{a}{N}+\lambda \right) \varDelta ^{N}_{0,T}}- \int _0^t \frac{ \left( \frac{a}{N}+\lambda \right) d{{\widetilde{I}}}^N_s+ \lambda d{\overline{X}}^N_s+d{{\widetilde{S}}}_t}{1+\left( \frac{a}{N}+\lambda \right) \varDelta ^{N}_{s,T}} \end{aligned}$$


$$\begin{aligned} \begin{aligned} {\bar{\phi }}^{N*}_t&={\bar{\phi }}^{N*}_0 -I^N_t + \int _0^t {\overline{Y}}^N_s d\varDelta ^{N}_{s,t} ={\bar{\phi }}^{N*}_0-I^N_t - {\overline{Y}}^N_0 \varDelta ^{N}_{0,t} - \int _0^t \varDelta ^{N}_{s,t} d {\overline{Y}}^N_s\\&= {\bar{\phi }}^{N*}_0- I^N_t + \varDelta ^{N}_{0,t}\frac{ \left( \frac{a}{N}+\lambda \right) {{\widetilde{I}}}^N_0 + \lambda \big ({\overline{X}}^N_0-{\bar{\phi }}^{N*}_0\big )+{{\widetilde{S}}}_0}{1+\left( \frac{a}{N}+\lambda \right) \varDelta ^{N}_{0,T}} \\&\quad + \int _0^t \varDelta ^{N}_{s,t}\frac{ \left( \frac{a}{N}+\lambda \right) d{{\widetilde{I}}}^N_s+ \lambda d{\overline{X}}^N_s+ d{{\widetilde{S}}}_t}{1+\left( \frac{a}{N}+\lambda \right) \varDelta ^{N}_{s,T}}. \end{aligned} \end{aligned}$$

It remains to compute \({\bar{\phi }}^{N*}_0\) from the condition \({\mathbb {E}}[{\bar{\phi }}^{N*}_T - {\overline{X}}^N_T|{\mathcal {F}}_0] = 0\). Substituting this into the above expression, we find

$$\begin{aligned} {\bar{\phi }}^{N*}_0={\overline{X}}^N_0+\frac{{{\widetilde{I}}}^N_0 - \varDelta ^{N}_{0,T} {{\widetilde{S}}}_0}{1+\frac{a}{N} \varDelta ^{N}_{0,T}} \end{aligned}$$

so that

$$\begin{aligned} {\overline{\phi }}^{N*}_t&= {\overline{X}}^N_0+\frac{1+\frac{a}{N} \varDelta ^{N}_{0,t}}{1+\frac{a}{N} \varDelta ^{N}_{0,T}}\big ({{\widetilde{I}}}^N_0 - \varDelta ^{N}_{0,T} {{\widetilde{S}}}_0\big ) \nonumber \\&- \big (I^N_t-\varDelta ^N_{0,t}{{\widetilde{S}}}_0\big )+ \int _0^t \varDelta ^{N}_{s,t}\frac{ \left( \frac{a}{N}+\lambda \right) d{{\widetilde{I}}}^N_s+ \lambda d{\overline{X}}^N_s+ d{{\widetilde{S}}}_t}{1+\left( \frac{a}{N}+\lambda \right) \varDelta ^{N}_{s,T}}. \end{aligned}$$

Step 3: computing the position of the agent Let \({{\check{\phi }}}^{i*}_t:= \phi ^{i*}_t - {\bar{\phi }}^{N*}_t\), \({\check{X}}^i_t = X^i_t - {\overline{X}}^N_t\) and \({\check{Y}}^i_t:= Y^i_t - {\overline{Y}}^N_t\). Then, \({\check{Y}}^i\) is an \({\mathbb {F}}\)-martingale and satisfies

$$\begin{aligned} {\check{Y}}^i_T = \frac{a}{N}{{\check{\phi }}}^{i*}_T + \lambda \big ({{\check{\phi }}}^{i*}_T -{\check{X}}^i_T\big ),\qquad {\check{Y}}^i_t = -\alpha (t) \dot{{{\check{\phi }}}}^{i*}_t {+ \frac{a}{N}{{\check{\phi }}}^{i*}_t.} \end{aligned}$$

together with the additional condition \({\mathbb {E}}[{{\check{\phi }}}^{i*}_T - {\check{X}}^i_T|{\mathcal {F}}_t] = 0\). Similarly to the second part, this system admits an explicit solution:

$$\begin{aligned} {\check{Y}}^i_t = -\frac{\lambda ({\check{X}}^i_0-{{\check{\phi }}}^{i*}_0)}{1+ \left( \frac{a}{N}+\lambda \right) {\widetilde{\varDelta }}^{N}_{0,T}} -\int _0^t\frac{\lambda d{\check{X}}^i_s}{1+ \left( \frac{a}{N}+\lambda \right) {\widetilde{\varDelta }}^{N}_{s,T}}. \end{aligned}$$


$$\begin{aligned} {{\check{\phi }}}^{i*}_t = {\check{X}}^i_0 + \int _0^t {\widetilde{\varDelta }}^{N}_{s,t} \frac{\lambda d{\check{X}}^i_s}{1+ \left( \frac{a}{N}+\lambda \right) {\widetilde{\varDelta }}^{N}_{s,T}} . \end{aligned}$$

\(\square \)

Remark 1

The optimal strategy is obtained by solving a series of linear equations from an equivalent characterization of optimality. Since all equations admit unique solutions, the equilibrium strategy is unique. This is a consequence of the strict concavity of the objective function in our linear quadratic setting.

Proofs of Propositions 1 and 2

Proof of Proposition 1

For all \( t \in [0,T]\), we define:

$$\begin{aligned}&g^N_{s,t} =\frac{\varDelta ^{N}_{s,t}}{\big (1+\big (\frac{a}{N}+\lambda \big )\varDelta ^{N}_{s,T}\big )}, \quad g_{s,t} =\frac{\varDelta _{s,t}}{\big (1+\lambda \varDelta _{s,T}\big )}, \\&{\tilde{g}}^{N}_{s,t} =\frac{{\widetilde{\varDelta }}^{N}_{s,t}}{\big (1+\big (\frac{a}{N}+\lambda \big ){\widetilde{\varDelta }}^N_{s,T}\big )}, \quad {\tilde{g}}_{s,t} =\frac{{\widetilde{\varDelta }}_{s,t}}{\big (1+\lambda {\widetilde{\varDelta }}_{s,T}\big )}, \end{aligned}$$

so that, for some constant C depending only on the parameters a, b, \(\alpha \) and \(\lambda \), but not on other ingredients of the model,

$$\begin{aligned} |\varDelta ^N_{s,t}-\varDelta _{s,t}|+|g^N_{s,t}-g_{s,t}| + |{\tilde{g}}^N_{s,t} - {\tilde{g}}_{s,t}| \le \frac{C}{N}. \end{aligned}$$

for all \(s,t\in [0,T]\). Now, let us consider the optimal strategies \((\phi _t^{i*})_{t\in [0,T]}\) and \((\phi _t^{MF,i*})_{t\in [0,T]}\) of the generic agent i respectively in the N-player setting and the mean field setting. Fix \(t \in [0,T]\). Then,

$$\begin{aligned} \phi _t^{i*}-\phi _t^{MF,i*} =&\frac{a}{N}\frac{\varDelta ^N_{0,t}-\varDelta ^N_{0,T}}{1+\frac{a}{N}\varDelta ^N_{0,T}}\big ({{\widetilde{I}}}^N_0 - {{\widetilde{S}}}_0 \varDelta ^N_{0,T}\big ) + {{\widetilde{I}}}^N_0 - {{\widetilde{I}}}_0 + {{\widetilde{S}}}_0\big (\varDelta _{0,T}-\varDelta ^N_{0,T}\big )\\&- I^N_t+ I_t + {{\widetilde{S}}}_0\big (\varDelta ^N_{0,t}-\varDelta _{0,t}\big )+ \int _0^t \big (g^N_{s,t}-g_{s,t}\big )\\&\left\{ \left( \frac{a}{N}+\lambda \right) d{{\widetilde{I}}}^N_s+ \lambda d{\overline{X}}^N_s + d{{\widetilde{S}}}_s\right\} \\&+\lambda \int _0^t g_t(s) d\big ( {{\widetilde{I}}}^N_s-{{\widetilde{I}}}_s+ {\overline{X}}^N_s-{\overline{X}}_s\big )\\&+\int _0^t \lambda \big ({\tilde{g}}^N_{s,t}-{\tilde{g}}_{s,t}\big ) d\big (X^i_s - {\overline{X}}^N_s\big ) + \lambda \int _0^t {\tilde{g}}_{s,t} d\big ( {\overline{X}}_s- {\overline{X}}^N_s\big ) \end{aligned}$$

Therefore, for some constant C depending only on the parameters a, b, \(\alpha \) and \(\lambda \), but not on other ingredients of the model,

$$\begin{aligned} {\mathbb {E}}\big [\big (\phi _t^{i*}-\phi _t^{MF,i*} \big )^2\big ]\le&\frac{C}{N^2} {\mathbb {E}}\big [\big ({{\widetilde{I}}}^N_0\big )^2\big ] + \frac{C}{N^2} {\mathbb {E}}\big [\big ({{\widetilde{S}}}_0\big )^2\big ] + {\mathbb {E}}\big [\big ({{\widetilde{I}}}^N_0 - {{\widetilde{I}}}_0\big )^2\big ] + {\mathbb {E}}\big [\big (I^N_t - I_t\big )^2\big ] \\&+ \frac{C}{N^2} {\mathbb {E}}[({{\widetilde{I}}}^N_t)^2] + C{\mathbb {E}}\big [\big ({{\widetilde{I}}}^N_t - {{\widetilde{I}}}_t\big )^2\big ] +\frac{C}{N^2}{\mathbb {E}}\big [{{\widetilde{S}}}_t^2\big ]\\&+ \frac{C}{N^2} {\mathbb {E}}\big [\big ({\overline{X}}_t^N\big )^2\big ] + C{\mathbb {E}}\big [\big ({\overline{X}}^N_t - {\overline{X}}_t\big )^2\big ] + \frac{C}{N^2} {\mathbb {E}}\big [\big ({\check{X}}^i_t\big )^2\big ]\\ \le&{\mathbb {E}}\big [\big (I^N_t - I_t\big )^2\big ] + \frac{C}{N^2} {\mathbb {E}}\big [\big ( I^N_T\big )^2\big ] + C{\mathbb {E}}\big [\big (I^N_T - I_T\big )^2\big ]\\&+\frac{C}{N^2} {\mathbb {E}}[S_T^2]+\frac{C}{N^2} {\mathbb {E}}\big [\big ({\overline{X}}_t\big )^2\big ] + \frac{C}{N^2} \sum _{i=1}^N{\mathbb {E}}\big [\big ({\check{X}}_t^i\big )^2\big ]\\ \le&\frac{C}{N^2} {\mathbb {E}}\left[ \sup _{0\le s\le T} S_s^2\right] + \frac{C}{N^2} {\mathbb {E}}\big [\big ({\overline{X}}_t\big )^2\big ] + \frac{C}{N} {\mathbb {E}}\big [\big ({\check{X}}_t^i\big )^2\big ]. \end{aligned}$$

where the estimate for the first line above is obtained through Jensen’s inequality. The other estimates of the proposition are obtained in a similar way. \(\square \)

Proof of Proposition 2

To lighten notation, and since we now have only one strategy, we omit in this proof the superscript MF in the candidate strategy \(\phi ^{MF,i*}\). The "distance to optimality" for this strategy is estimated as follows.

$$\begin{aligned}&J^{N,i}\big (\phi ^{i},\phi ^{-i*}\big ) - J^{N,i}\big (\phi ^{i*},\phi ^{-i*}\big ) \\&= J^{N,i}\big (\phi ^{i},\phi ^{-i*}\big ) - J^{MF}\big (\phi ^{i},{\bar{\phi }}^*\big )+J^{MF}\big (\phi ^{i},{\bar{\phi }}^*\big ) - J^{MF}\big (\phi ^{i*},{\bar{\phi }}^*\big )\\ {}&\quad + J^{MF}\big (\phi ^{i^*},{\bar{\phi }}^*\big ) - J^{N,i}\big (\phi ^{i*},\phi ^{-i*}\big )\\&\le J^{N,i}\big (\phi ^{i},\phi ^{-i*}\big ) - J^{MF}\big (\phi ^{i},{\bar{\phi }}^*\big ) + J^{MF}\big (\phi ^{i^*},{\bar{\phi }}^*\big ) - J^{N,i}\big (\phi ^{i*},\phi ^{-i*}\big ). \end{aligned}$$

The second difference is estimated as follows:

$$\begin{aligned}&J^{MF}\big (\phi ^{i^*},{\bar{\phi }}^*\big ) - J^{N,i}\big (\phi ^{i*},\phi ^{-i*}\big ) \nonumber \\&\quad = -{\mathbb {E}}\Big [\int _0^T {{\dot{\phi }}}^{i*}_t\Big \{ a\big ({\bar{\phi }}^*_t - {\bar{\phi }}^{N*}_t-{\bar{\phi }}^*_0 + {\bar{\phi }}^{N*}_0\big ) {+ \frac{\alpha (t)b}{2}\big (\dot{{\bar{\phi }}}^*_t-\dot{{\bar{\phi }}}^{N,-i*}_t\big )}\Big \}dt\Big ] \end{aligned}$$


$$\begin{aligned} \dot{{\bar{\phi }}}^*_t-\dot{{\bar{\phi }}}^{N,-i*}_t = \dot{{\bar{\phi }}}^*_t-\dot{{\bar{\phi }}}^{N*}_t + \frac{{{\dot{\phi }}}^{i*}-\dot{{\bar{\phi }}}^{N*}}{N-1}, \end{aligned}$$

it follows from the Cauchy–Schwarz inequality and Proposition 1 that

$$\begin{aligned} \big |J^{MF}\big (\phi ^{i^*},{\bar{\phi }}^*\big ) - J^{N,i}\big (\phi ^{i*},\phi ^{-i*}\big ) \big |\le \frac{C}{\sqrt{N}}. \end{aligned}$$

The first difference admits the following estimate.

$$\begin{aligned}&J^{N,i}\big (\phi ^{i},\phi ^{-i*}\big ) - J^{MF}\big (\phi ^{i},{\bar{\phi }}^*\big ) = a{\mathbb {E}}\Big [\int _0^T {{\dot{\phi }}}^{i}_t \big ({\bar{\phi }}^*_t - {\bar{\phi }}^{N*}_t-{\bar{\phi }}^*_0 + {\bar{\phi }}^{N*}_0\big )dt\Big ]\nonumber \\&- \frac{a}{N}{\mathbb {E}}\Big [\int _0^T {{\dot{\phi }}}^{i}_t \big (\phi ^i_t-\phi ^{i*}_t-\phi ^i_0+\phi ^{i*}_0\big )dt\Big ]+ b{\mathbb {E}} \Big [\int _0^T\alpha (t){{\dot{\phi }}}^{i}_t \big (\dot{{\bar{\phi }}}^*_t-\dot{{\bar{\phi }}}^{N,-i*}_t\big )dt\Big ] \nonumber \\&\le {\mathbb {E}}\Big [\int _0^T \big ({{\dot{\phi }}}^{i}_t\big )^2 dt\Big ]^{\frac{1}{2}}\Big \{a {\mathbb {E}}\Big [\int _0^T \big ({\bar{\phi }}^*_t - {\bar{\phi }}^{N*}_t-{\bar{\phi }}^*_0 + {\bar{\phi }}^{N*}_0\big )^2 dt\Big ]^{\frac{1}{2}} \nonumber \\&\quad + \frac{a}{N} {\mathbb {E}}\Big [\int _0^T \big (\phi ^{i*}_t-\phi ^{i*}_0\big )^2 dt\Big ]^{\frac{1}{2}}+ \frac{b}{N-1} {\mathbb {E}}\Big [\int _0^T \alpha ^2(t)\big ({{\dot{\phi }}}^{i*}_t-\dot{{\bar{\phi }}}^{N*}\big )^2 dt\Big ]^{\frac{1}{2}} \nonumber \\&\quad + b {\mathbb {E}}\Big [ \int _0^T\alpha ^2(t)\big (\dot{{\bar{\phi }}}^*_t-\dot{{\bar{\phi }}}^{N,*}_t\big )^2 \Big ]^\frac{1}{2} \Big \}\le \frac{C_0}{\sqrt{N}}{\mathbb {E}}\Big [\int _0^T ({{\dot{\phi }}}^{i}_t)^2 dt\Big ]^{\frac{1}{2}} \end{aligned}$$

for some constant \(C_0<\infty \), which does not depend on \(\phi ^i\), in view of Proposition 1 and (29). On the other hand, the following estimate also holds true.

$$\begin{aligned} J^{N,i}\big (\phi ^i, \phi ^{-i*}\big ) =&- {\mathbb {E}}\Big [ \int _{0}^{T}\Big \{\frac{\alpha (t)}{2}\dot{\phi ^i_t}\Big ({{\dot{\phi }}}^i_t + b \dot{{\bar{\phi }}}^{N,-i*}_t\Big )+\dot{\phi ^i_{t}}\big (S_t + a\big ({\bar{\phi }}^{N*}_t - {\bar{\phi }}^{N*}_0\big ) \Big \}dt \nonumber \\&\quad +\frac{a}{N}\int _0^T{{\dot{\phi }}}^i_t\big (\phi ^i_t - \phi ^i_0 - \phi ^{i*}_t + \phi ^{i*}_0\big )dt +\phi ^i_0 S_0 \nonumber \\&\quad - \big (\phi ^i_T-X^i_T\big )S_T+\frac{\lambda }{2}\big (\phi ^i_{T}- X^i_{T}\big )^2\Big ],\nonumber \\&\le -\frac{{\bar{\alpha }}}{2}{\mathbb {E}}\Big [\int _0^T \big ({{\dot{\phi }}}^i_t\big )^2dt\Big ] - \frac{\lambda }{2}{\mathbb {E}}\big [\big (\phi ^i_T\big )^2\big ]+ C_1 {\mathbb {E}}\Big [\int _0^T \big ({{\dot{\phi }}}^i_t\big )^2dt\Big ]^{1\over 2}\nonumber \\&\quad + C_2 {\mathbb {E}}\big [\big (\phi ^i_T\big )^2\big ]^{1\over 2} + C_3, \end{aligned}$$

where \(\bar{{\bar{\alpha }}} = \max _{0\le t\le T}\alpha (t)\) and

$$\begin{aligned} C_1&= \frac{b}{2} {\mathbb {E}}\Big [\int _0^T\alpha ^2(t) \big (\dot{{\bar{\phi }}}^{N,-i*}_t\big )^2dt\Big ]^{1\over 2} + a {\mathbb {E}}\Big [\int _0^T ({\bar{\phi }}^{N*}_t-{\bar{\phi }}^{N*}_0)^2dt\Big ]^{1\over 2}\\&\quad + \frac{a}{N}{\mathbb {E}}\Big [\int _0^T \big ({\bar{\phi }}^{i*}_t-{\bar{\phi }}^{i*}_0\big )^2dt\Big ]^{1\over 2} + {\mathbb {E}}\Big [\int _0^T \big (S_t-S_0\big )^2\Big ]^{1\over 2},\\ C_2&= {\mathbb {E}}\big [(S_T-S_0)^2\big ]^{1\over 2} + 2 {\mathbb {E}}\big [\big (X^i_T\big )^2\big ]^{\frac{1}{2}},\qquad C_3 = \big |{\mathbb {E}}\big [X^i_T S_T\big ]\big |. \end{aligned}$$

Thus, there exists a constant \(C^*<\infty \), which does not depend on \(\phi ^i\), such that if

$$\begin{aligned} {\mathbb {E}}\Big [\int _0^T \big ({{\dot{\phi }}}^i_t\big )^2dt\Big ] +{\mathbb {E}}\big [\big (\phi ^i_T\big )^2\big ]>C^*, \end{aligned}$$


$$\begin{aligned} J^{N,i}\big (\phi ^i, \phi ^{-i*}\big ) - J^{N,i}\big (\phi ^{i*}, \phi ^{-i*}\big )<0. \end{aligned}$$

Therefore, from (30) and (31) it follows that for any admissible strategy \(\phi ^i\),

$$\begin{aligned}&J^{N,i}\big (\phi ^i, \phi ^{-i*}\big ) - J^{N,i}\big (\phi ^{i*}, \phi ^{-i*}\big ) \\&\quad \le {\mathbf {1}}_{{\mathbb {E}}[\int _0^T ({{\dot{\phi }}}^i_t)^2dt ] +{\mathbb {E}}[(\phi ^i_T)^2]\le C^*}\Big \{\frac{C}{\sqrt{N}} + \frac{C_0}{\sqrt{N}} {\mathbb {E}}\Big [\int _0^T\big ({{\dot{\phi }}}_t^i\big )^2 dt\Big ]^{1\over 2}\Big \}\\&\quad \le \frac{C}{\sqrt{N}} + \frac{C_0 \sqrt{C^*}}{\sqrt{N}}. \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Féron, O., Tankov, P. & Tinsi, L. Price formation and optimal trading in intraday electricity markets. Math Finan Econ 16, 205–237 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Intraday electricity market
  • Market impact
  • Renewable energy

JEL Classification

  • C73
  • Q42
  • D53