Skip to main content
Log in

Nash equilibrium strategies and survival portfolio rules in evolutionary models of asset markets

  • Published:
Mathematics and Financial Economics Aims and scope Submit manuscript

Abstract

We consider a stochastic model of a financial market with one-period assets and endogenous asset prices. The model was initially developed and analyzed in the context of Evolutionary Finance with the main focus on questions of “survival and extinction” of investment strategies (portfolio rules). In this paper we view the model from a different, game-theoretic, perspective and analyze Nash equilibrium properties of survival portfolio rules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. Although Claude Shannon—the famous founder of the mathematical theory of information—did not publish on investment-related issues, his ideas, expressed in his lectures on investment problems (MIT 1956), should be regarded as the initial source of the strand of literature we cite here. For the history of these ideas and the related discussion see Cover [7]. An excellent exposition of capital growth theory is given in Ch. 16 “Information Theory and Portfolio Theory” in the book by Cover and Thomas [8]. For an elementary introduction to the subject see Evstigneev et al. [12], Ch. 17.

References

  1. Algoet, P.H., Cover, T.M.: Asymptotic optimality and asymptotic equipartition properties of log-optimum investment. Ann. Probab. 16(2), 876–898 (1988)

    Article  MathSciNet  Google Scholar 

  2. Amir, R., Evstigneev, I.V., Schenk-Hoppé, K.R.: Asset Market games of survival: a synthesis of evolutionary and dynamic games. Ann. Financ. 9(2), 121–144 (2013)

    Article  MathSciNet  Google Scholar 

  3. Bahsoun, W., Evstigneev, I.V., Xu, L.: Almost Sure nash equilibrium strategies in evolutionary models of asset markets. Math. Methods Oper. Res. 73, 235–250 (2011)

    Article  MathSciNet  Google Scholar 

  4. Bell, R.M., Cover, T.M.: Competitive optimality of logarithmic investment. Math. Oper. Res. 5(2), 161–166 (1980)

    Article  MathSciNet  Google Scholar 

  5. Bell, R.M., Cover, T.M.: Game-theoretic optimal portfolios. Manag. Sci. 34(6), 724–733 (1988)

    Article  MathSciNet  Google Scholar 

  6. Breiman, L.: Optimal gambling systems for favorable games. Proc. Fourth Berk. Symp. Math. Stat. Probab. 1, 65–78 (1961)

    MathSciNet  MATH  Google Scholar 

  7. Cover, T.M.: Shannon and investment. IEEE Inf. Theory Soc. Newsl, Summer, Special Golden Jubilee Issue, pp. 10–11 (1998)

  8. Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley, New York (2006)

    MATH  Google Scholar 

  9. Evstigneev, I.V., Hens, T., Schenk-Hoppé, K.R.: Market selection of financial trading strategies: global stability. Math. Financ. 12(4), 329–339 (2002)

    Article  MathSciNet  Google Scholar 

  10. Evstigneev, I.V., Hens, T., Schenk-Hoppé, K.R.: Evolutionary stable stock markets. Econ. Theory 27(2), 449–468 (2006)

    Article  MathSciNet  Google Scholar 

  11. Evstigneev, I.V., Hens, T., Schenk-Hoppé, K.R.: Evolutionary finance. In: Hens, T., Schenk-Hoppé, K.R. (eds.) Handbook of Financial Markets: Dynamics and Evolution, Chapter 9, pp. 507–566. Elsevier, Amsterdam (2009)

    Chapter  Google Scholar 

  12. Evstigneev, I.V., Hens, T., Schenk-Hoppé, K.R.: Mathematical Financial Economics: A Basic Introduction. Springer, Berlin (2015)

    Book  Google Scholar 

  13. Evstigneev, I.V., Hens, T., Schenk-Hoppé, K.R.: Evolutionary behavioural finance. In: Haven, E., et al. (eds.) Handbook of Post Crisis Financial Modelling, pp. 214–234. Palgrave MacMillan, London (2016)

    Chapter  Google Scholar 

  14. Hakansson, N.H., Ziemba, W.T.: Capital growth theory. In: Jarrow, R.A., et al. (eds.) Handbooks in Operations Research and Management Science, pp. 65–86. Elsevier, Amsterdam (1995)

    Google Scholar 

  15. Hall, P., Heyde, C.C.: Martingale Limit Theory and Its Application. Academic Press, London (1980)

    MATH  Google Scholar 

  16. Kelly, J.L.: A new interpretation of information rate. Bell Syst. Tech. J. 35(7), 917–926 (1956)

    Article  MathSciNet  Google Scholar 

  17. Kuhn, D., Luenberger, D.G.: Analysis of the rebalancing frequency in log-optimal portfolio selection. Quant. Financ. 10, 221–234 (2010)

    Article  MathSciNet  Google Scholar 

  18. Latané, H.: Criteria for choice among risky ventures. J. Polit. Econ. 67, 144–155 (1959)

    Article  Google Scholar 

  19. MacLean, L.C., Thorp, E.O., Ziemba, W.T. (eds.): The Kelly Capital Growth Investment Criterion: Theory and Practice. World Scientific, Singapore (2010)

    Google Scholar 

  20. MacLean, L.C., Ziemba, W.T. (eds.): Handbook of the Fundamentals of Financial Decision Making. World Scientific, Singapore (2013)

    Google Scholar 

  21. Ziemba, W.T., Vickson, R.G.: Models of optimal capital accumulation and portfolio selection and the capital growth criterion. In: MacLean, L.C., et al. (eds.) The Kelly Capital Growth Investment Criterion: Theory and Practice, pp. 473–485. World Scientific, Singapore (2011)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsten Hens.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Lemma 1

Let us first assume that at least one of the coordinates of \(\lambda \) is zero, i.e. \(\mathbf {K}:=\{k:\lambda _{k} =0\}\ne \emptyset \). Denote by \(S^{\prime }\) the set of those s for which \(\sum _{k=1}^{K}R_{k}(s)\lambda _{k}=0\). If \(s\in S^{\prime }\), then \(R_{k}(s)\lambda _{k}=0\) for all k. Consequently,

$$\begin{aligned} B=\sum _{k=1}^{K}R_{k}(s)\frac{\lambda _{k}}{\lambda _{k}^{*}\kappa +\lambda _{k}(1-\kappa )}=0,\ s\in S^{\prime }, \end{aligned}$$

and so \(F(\lambda ,\kappa ;s)=+\infty \), \(s\in S^{\prime }\). Thus for any \(H>1\), we have

$$\begin{aligned}&E\min [H,\ln F(\lambda ,\kappa ;s)]\nonumber \\&=E\min [H,\ln F(\lambda ,\kappa ;s)]\mathbf {1}_{S^{\prime }}+E\min [H,\ln F(\lambda ,\kappa ;s)]\mathbf {1}_{S\backslash S^{\prime }}\ge \nonumber \\&HP(S^{\prime })+2(\ln c)(1-P(S^{\prime })), \end{aligned}$$
(29)

where \(\mathbf {1}_{\Gamma }\) is the indicator function of the set \(\Gamma \).

Assume that \(P(S^{\prime })>0\). Then for all H large enough, the expression in (29) is greater than 1. The assertion of Lemma 1 will be true for any H for which (29) is greater than 1 and \(\delta =1\).

Now let us assume that \(P(S^{\prime })=0\), i.e. \(\sum _{k=1}^{K}R_{k} (s)\lambda _{k}>0\) (a.s.). In this case, we will conduct the proof of the lemma in three steps.

Step 1: Let us prove that

$$\begin{aligned} E\ln F(\lambda ,\kappa ;s)>0\ \mathrm{for all}\ \kappa \in (0,1]. \end{aligned}$$
(30)

By applying Jensen’s inequality, we find

$$\begin{aligned} E\ln \sum _{k=1}^{K}R_{k}(s)\frac{\lambda _{k}^{*}}{\lambda _{k}^{*} \kappa +\lambda _{k}(1-\kappa )}\ge E\sum _{k=1}^{K}R_{k}(s)\ln \frac{\lambda _{k}^{*}}{\lambda _{k}^{*}\kappa +\lambda _{k}(1-\kappa )}\end{aligned}$$
(31)
$$\begin{aligned} =\sum _{k=1}^{K}\lambda _{k}^{*}\ln \frac{\lambda _{k}^{*}}{\lambda _{k}^{*}\kappa +\lambda _{k}(1-\kappa )} \end{aligned}$$
(32)

and

$$\begin{aligned} E\ln \sum _{k=1}^{K}R_{k}(s)\frac{\lambda _{k}}{\lambda _{k}^{*}\kappa +\lambda _{k}(1-\kappa )}<\ln E\sum _{k=1}^{K}R_{k}(s)\frac{\lambda _{k}}{\lambda _{k}^{*}\kappa +\lambda _{k}(1-\kappa )}\end{aligned}$$
(33)
$$\begin{aligned} =\ln \sum _{k=1}^{K}\lambda _{k}^{*}\frac{\lambda _{k}}{\lambda _{k}^{*}\kappa +\lambda _{k}(1-\kappa )}. \end{aligned}$$
(34)

The inequality in (33) is strict because the right-hand side of (33) is finite (all \(\lambda _{k}^{*}\) and some \(\lambda _{k}\) are strictly positive) and there is no constant \(\gamma \) such that

$$\begin{aligned} \sum _{k=1}^{K}R_{k}(s)\frac{\lambda _{k}}{\lambda _{k}^{*}\kappa +\lambda _{k}(1-\kappa )}=\gamma \ \mathrm{(a.s.)}. \end{aligned}$$
(35)

Indeed, if (35) holds, then

$$\begin{aligned} \sum _{k=1}^{K}R_{k}(s)\nu _{k}=0\text {\ }\mathrm{(a.s.)}, \end{aligned}$$
(36)

where \(\nu _{k}:=\lambda _{k}[\lambda _{k}^{*}\kappa +\lambda _{k} (1-\kappa )]^{-1}-\gamma \). Observe that at least one of the numbers \(\nu _{k}\) is not equal to zero. Otherwise, \(\lambda _{k}=[\lambda _{k}^{*} \kappa +\lambda _{k}(1-\kappa )]\gamma \) for all k, and by summing up these equalities over k, we get \(\gamma =1\), which yields \(\lambda _{k}=[\lambda _{k}^{*}\kappa +\lambda _{k}(1-\kappa )]\). Thus \(\lambda _{k}=\lambda _{k} ^{*}\) for all k (recall that \(\kappa \ne 0\)). This is a contradiction because \(\lambda \ne \lambda ^{*}\). From this we conclude that at least one of the numbers \(v_{k}\) is not equal to zero, which shows that (36) cannot hold since the functions \(R_{k}(s)\) are linearly independent with respect to the given distribution on S.

By combining (31)–(34), we get

$$\begin{aligned} E\ln F(\lambda ,\kappa ;s)>\Phi _{\kappa }(\lambda ), \end{aligned}$$
(37)

where

$$\begin{aligned} \Phi _{\kappa }(\lambda ):=\sum _{k=1}^{K}\lambda _{k}^{*}\ln \frac{\lambda _{k}^{*}}{\lambda _{k}^{*}\kappa +\lambda _{k}(1-\kappa )}-\ln \sum _{k=1} ^{K}\lambda _{k}^{*}\frac{\lambda _{k}}{\lambda _{k}^{*}\kappa +\lambda _{k}(1-\kappa )}. \end{aligned}$$

In [9], pp. 337–338, it was proved that \(\Phi _{\kappa }(\lambda )>0\) for all \(\lambda =(\lambda _{1},\ldots ,\lambda _{K})>0\). Therefore \(\Phi _{\kappa }(\lambda (1-\varepsilon )+\varepsilon \lambda ^{*})>0\) for each \(\varepsilon >0\). The function \(\Phi _{\kappa }(\lambda )\) is finite and continuous on \(\Delta ^{K}\). Consequently, \(\Phi _{\kappa }(\lambda )=\lim _{\varepsilon \downarrow 0}\Phi _{\kappa }(\lambda (1-\varepsilon )+\varepsilon \lambda ^{*}))\ge 0\). This inequality combined with (37) yields (30).

Step 2: Let us show that for all \(\kappa \in (0,1]\),

$$\begin{aligned} F(\lambda ,\kappa ,s)\ge F(\lambda ,1,s)=[\sum _{k=1}^{K}R_{k}(s)\frac{\lambda _{k}}{\lambda _{k}^{*}}]^{-1} \end{aligned}$$
(38)

(\(0^{-1}:=\)\(+\infty \)). Fix any \(s\in S\). If \(R_{k}(s)\lambda _{k}=0\) for all k, then \(F(\lambda ,\kappa ,s)=F(\lambda ,1,s)=+\infty \), and so inequality (38) holds. Let us assume that \(R_{k}(s)\lambda _{k}\ne 0\) for some k. Then the denominator in (20) is strictly positive, and so \(c^{2}\le F(\lambda ,\kappa ,s)<\infty \). For \(\kappa \in (0,1)\), we have \(F(\lambda ,\kappa ;s)=G(\lambda ,u,s)\), where

$$\begin{aligned} G(\lambda ,u,s):=\frac{\sum _{k=1}^{K}R_{k}(s)\dfrac{\lambda _{k}^{*}}{\lambda _{k}^{*}u+\lambda _{k}}}{\sum _{k=1}^{K}R_{k}(s)\dfrac{\lambda _{k} }{\lambda _{k}^{*}u+\lambda _{k}}}=\frac{\sum _{k=1}^{K}R_{k}(s)\dfrac{\lambda _{k}^{*}}{\lambda _{k}^{*}+\lambda _{k}/u}}{\sum _{k=1}^{K} R_{k}(s)\dfrac{\lambda _{k}}{\lambda _{k}^{*}+\lambda _{k}/u}}, \end{aligned}$$

and \(u:=\kappa (1-\kappa )^{-1}\). When the variable \(\kappa \) ranges through (0, 1), the variable u ranges through \((0,+\infty )\), and \(G(\lambda ,u,s)\rightarrow [\sum _{k=1}^{K}R_{k}(s)(\lambda _{k}/\lambda _{k}^{*})^{-1}]^{-1}\) as \(u\rightarrow \infty \). Thus, to verify (38), it is sufficient to show that the derivative \(G(\lambda ,u;s)^{\prime }\) of the function \(G(\lambda ,u;s)\) with respect to u is non-positive for all \(u>0\). Assuming that the parameter s is fixed, we omit “s” in the notation and write

$$\begin{aligned}&G(\lambda ,u)^{\prime }\nonumber \\&=\frac{\left( \sum R_{k}\dfrac{\lambda _{k}^{*}}{\lambda _{k}^{*}u+\lambda _{k}}\right) ^{\prime }\left( \sum R_{k}\dfrac{\lambda _{k}}{\lambda _{k}^{*}u+\lambda _{k}}\right) -\left( \sum R_{k}\dfrac{\lambda _{k}^{*}}{\lambda _{k}^{*}u+\lambda _{k}}\right) \left( \sum R_{k}\dfrac{\lambda _{k}}{\lambda _{k}^{*}u+\lambda _{k}}\right) ^{\prime }}{\left( \sum R_{k}\dfrac{\lambda _{k}}{\lambda _{k}^{*}u+\lambda _{k}}\right) ^{2}}, \end{aligned}$$

where \(\sum =\sum _{k=1}^{K}\). The sign of the above fraction is the same as the sign of its nominator

$$\begin{aligned} J:=-\,\sum R_{k}\frac{(\lambda _{k}^{*})^{2}}{(\lambda _{k}^{*}u+\lambda _{k})^{2}}\sum R_{k}\frac{\lambda _{k}}{\lambda _{k}^{*}u+\lambda _{k}}\nonumber \\ +\sum R_{k}\frac{\lambda _{k}^{*}}{\lambda _{k}^{*}u+\lambda _{k}}\sum R_{k} \frac{\lambda _{k}\lambda _{k}^{*}}{(\lambda _{k}^{*}u+\lambda _{k})^{2}} \end{aligned}$$

By setting \(w_{k}:=\lambda _{k}^{*}u+\lambda _{k}\) and \(v_{k}:=\lambda _{k}^{*}w_{k}^{-1}\), we obtain \(\lambda _{k}=w_{k}-\lambda _{k}^{*}u\) and

$$\begin{aligned} J= & {} -\,\sum R_{k}(\lambda _{k}^{*})^{2}w_{k}^{-2}\sum R_{k}\lambda _{k}w_{k} ^{-1}+\sum R_{k}\lambda _{k}^{*}w_{k}^{-1}\sum R_{k}\lambda _{k}\lambda _{k}^{*}w_{k}^{-2}\nonumber \\= & {} -\,\sum R_{k}(\lambda _{k}^{*})^{2}w_{k}^{-2}\sum R_{k}(w_{k}-\lambda _{k}^{*}u)w_{k}^{-1}\nonumber \\&+\,\sum R_{k}\lambda _{k}^{*}w_{k}^{-1}\sum R_{k} (w_{k}-\lambda _{k}^{*}u)\lambda _{k}^{*}w_{k}^{-2}\nonumber \\= & {} -\,\sum R_{k}v_{k}^{2}\sum (R_{k}-R_{k}uv_{k})+\sum R_{k}v_{k}\sum R_{k} (v_{k}-v_{k}^{2}u)\nonumber \\&-\,\sum R_{k}v_{k}^{2}(1-\sum R_{k}uv_{k})+\sum R_{k}v_{k}\left( \sum R_{k}v_{k}-\sum R_{k}v_{k}^{2}u\right) \nonumber \\= & {} -\,\sum R_{k}v_{k}^{2}+\left( \sum R_{k}v_{k}^{2}\right) \sum R_{k}v_{k}u+\left( \sum R_{k} v_{k}\right) ^{2}-\left( \sum R_{k}v_{k}\right) \sum R_{k}v_{k}^{2}u\nonumber \\= & {} \left( \sum R_{k}v_{k}\right) ^{2}-\sum R_{k}v_{k}^{2}\le 0. \end{aligned}$$

The last expression is non-positive by virtue of the Schwartz inequality (we use here the fact that \(R_{k}\ge 0\) and \(\sum R_{k}=1\)). This completes the proof of inequality (38).

Step 3. Let us show that there exists a natural number m such that \(E\min \{m,\ln F(\lambda ,1,s)\}>0\). The sequence of random variables

$$\begin{aligned} \phi _{m}:=\min \{m,\ln F(\lambda ,1,s)\}, m=1,2,\ldots , \end{aligned}$$

is bounded below by \(2\ln c\) [see (21)], is nondecreasing and tends to \(\ln F(\lambda ,1,s)\) for each s. Consequently, we have \(E\phi _{m}\rightarrow E\ln F(\lambda ,1,s)>0\) [see (30)], and so \(E\phi _{m}>0\) for some \(m=m_{0}\). By setting \(H:=m_{0}\), \(\delta :=E\min \{H,\ln F(\lambda ,1;s)\}>0\) and using (38), we find

$$\begin{aligned} E\min \{H,\ln F(\lambda ,\kappa ;s)\}\ge E\min \{H,\ln F(\lambda ,1;s)\}=\delta , \end{aligned}$$

which proves Lemma 1 in the case when at least one of the coordinates of \(\lambda \) is zero.

Now assume that \(\lambda \) has no zero coordinates: \(\lambda _{k}>0\) for each k. Then the function \(\ln F(\lambda ,\kappa ;s)\), \(\kappa \in [0,1]\), is uniformly bounded:

$$\begin{aligned} 2\ln c\le \ln F(\lambda ,\kappa ;s)\le \ln (\min _{k}\lambda _{k})^{-2}, \end{aligned}$$

and so \(E\ln F(\lambda ,\kappa ;s)\) is continuous in \(\kappa \in [0,1] \). It suffices to show that the infimum of \(E\ln F(\lambda ,\kappa ;s)\) with \(\kappa \in [0,1]\) is strictly positive (then \(\delta \) can be defined as this infimum and H as \(2|\ln c|+2|\ln \min \lambda _{k}|)\). In view of the continuity of \(E\ln F(\lambda ,\kappa ;s)\) this will be proved if we establish the inequality \(E\ln F(\lambda ,\kappa ;s)>0\) for each \(\kappa \in [0,1]\). For \(\kappa \in (0,1]\) this was proved above [see (30)] under the condition that \(\sum _{k=1}^{K}R_{k}(s)\lambda _{k}>0\) (a.s.), which holds if \(\lambda >0\). In the case of \(\kappa =0\), we have

$$\begin{aligned} E\ln F(\lambda ,0,s)=E\ln \sum _{k=1}^{K}R_{k}(s)\dfrac{\lambda _{k}^{*} }{\lambda _{k}}\ge \ln \sum _{k=1}^{K}\lambda _{k}^{*}\dfrac{\lambda _{k}^{*}}{\lambda _{k}}\ge \sum _{k=1}^{K}\lambda _{k}^{*}\ln \dfrac{\lambda _{k} ^{*}}{\lambda _{k}}>0 \end{aligned}$$

as long as \(\lambda ^{*}\),\(\lambda >0\) and \(\lambda \ne \lambda ^{*}\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belkov, S., Evstigneev, I.V., Hens, T. et al. Nash equilibrium strategies and survival portfolio rules in evolutionary models of asset markets. Math Finan Econ 14, 249–262 (2020). https://doi.org/10.1007/s11579-019-00254-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11579-019-00254-w

Keywords

Mathematics Subject Classification

Navigation