Skip to main content

Dual representations for systemic risk measures based on acceptance sets

Abstract

We establish dual representations for systemic risk measures based on acceptance sets in a general setting. We deal with systemic risk measures of both “first allocate, then aggregate” and “first aggregate, then allocate” type. In both cases, we provide a detailed analysis of the corresponding systemic acceptance sets and their support functions. The same approach delivers a simple and self-contained proof of the dual representation of utility-based risk measures for univariate positions.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Aliprantis, Ch.D., Border, K.C.: Infinite Dimensional Analysis: A Hitchhiker’s Guide. Springer, Berlin (2006)

  2. 2.

    Ararat, Ç., Rudloff, B.: Dual representations for systemic risk measures. To appear in Math. Financ. Econ. arXiv:1607.03430 (2019)

  3. 3.

    Armenti, Y., Crépey, S., Drapeau, S., Papapantoleon, A.: Multivariate shortfall risk allocation and systemic risk. SIAM J. Financ. Math. 9, 90–126 (2018)

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Artzner, Ph, Delbaen, F., Eber, J.M., Heath, D.: Coherent measures of risk. Math. Finance 9, 203–228 (1999)

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Biagini, F., Fouque, J.P., Frittelli, M., Meyer-Brandis, T.: A unified approach to systemic risk measures via acceptance sets. Math. Finance 29, 329–367 (2019)

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Biagini, F., Fouque, J., Frittelli, M., Meyer-Brandis, T.: On fairness of systemic risk measures. To appear in Finance Stoch. arXiv:1803.09898 (2019)

  7. 7.

    Biagini, S., Frittelli, M.: On the extension of the Namioka–Klee theorem and on the Fatou property for risk measures. In: Optimality and Risk: Modern Trends in Mathematical Finance, pp. 1–28. Springer (2009)

  8. 8.

    Burgert, C., Rüschendorf, L.: Consistent risk measures for portfolio vectors. Insur. Math. Econ. 38, 289–297 (2006)

    MathSciNet  Article  MATH  Google Scholar 

  9. 9.

    Chen, C., Iyengar, G., Moallemi, C.C.: An axiomatic approach to systemic risk. Manag. Sci. 59, 1373–1388 (2013)

    Article  Google Scholar 

  10. 10.

    Delbaen, F.: Coherent risk measures on general probability spaces. In: Sandmann, K., Schönbucher, P.J. (eds.) Advances in Finance and Stochastics: Essays in Honour of Dieter Sondermann, pp. 1–37. Springer, Berlin (2002)

    Google Scholar 

  11. 11.

    Delbaen, F., Owari, K.: Convex functions on dual Orlicz spaces. Positivity 23, 1051–1064 (2019)

    MathSciNet  Article  MATH  Google Scholar 

  12. 12.

    Dieudonné, J.: Sur la séparation des ensembles convexes. Math. Ann. 163(1), 1–3 (1966)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Edgar, G.A., Sucheston, L.: Stopping Times and Directed Processes. Cambridge University Press, Cambridge (1992)

    Book  MATH  Google Scholar 

  14. 14.

    Ekeland, I., Galichon, A., Henry, M.: Comonotonic measures of multivariate risks. Math. Finance 22, 109–132 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  15. 15.

    Ekeland, I., Schachermayer, W.: Law invariant risk measures on \(L^{\infty }({\mathbb{R}}^{d})\). Stat. Risk Model. 28, 195–225 (2011)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Farkas, W., Koch-Medina, P., Munari, C.: Measuring risk with multiple eligible assets. Math. Financ. Econ. 9, 3–27 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  17. 17.

    Fan, K.: Minimax theorems. Proc. Natl. Acad. Sci. USA 39, 42 (1953)

    MathSciNet  Article  MATH  Google Scholar 

  18. 18.

    Feinstein, Z., Rudloff, B., Weber, S.: Measures of systemic risk. SIAM J. Financ. Math. 8, 672–708 (2017)

    MathSciNet  Article  MATH  Google Scholar 

  19. 19.

    Föllmer, H., Schied, A.: Stochastic Finance: An Introduction in Discrete Time. de Gruyter, Berlin (2016)

    Book  MATH  Google Scholar 

  20. 20.

    Frittelli, M., Scandolo, G.: Risk measures and capital requirements for processes. Math. Finance 16, 589–612 (2006)

    MathSciNet  Article  MATH  Google Scholar 

  21. 21.

    Gao, N., Leung, D., Munari, C., Xanthos, F.: Fatou property, representations, and extensions of law-invariant risk measures on general Orlicz spaces. Finance Stoch. 22, 395–415 (2018)

    MathSciNet  Article  MATH  Google Scholar 

  22. 22.

    Gao, N., Leung, D., Xanthos, F.: Closedness of convex sets in Orlicz spaces with applications to dual representation of risk measures. Stud. Math. 249, 329–347 (2019)

    MathSciNet  Article  MATH  Google Scholar 

  23. 23.

    Gao, N., Munari, C.: Surplus-invariant risk measures. To appear in Math. Oper. Res., arXiv:1707.04949 (2017)

  24. 24.

    Hamel, A.H., Heyde, F.: Duality for set-valued measures of risk. SIAM J. Financ. Math. 1, 66–95 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  25. 25.

    Hamel, A.H., Heyde, F., Rudloff, B.: Set-valued risk measures for conical market models. Math. Financ. Econ. 5, 1–28 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  26. 26.

    Jouini, E., Meddeb, M., Touzi, N.: Vector-valued coherent risk measures. Finance Stoch. 8, 531–552 (2004)

    MathSciNet  MATH  Google Scholar 

  27. 27.

    Kromer, E., Overbeck, L., Zilch, K.: Systemic risk measures over general measurable spaces. Math. Methods Oper. Res. 84, 323–357 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  28. 28.

    Leung, D., Tantrawan, M.: On closedness of convex sets in Banach lattices. arXiv:1808.06747 (2018)

  29. 29.

    Meyer-Nieberg, P.: Banach Lattices. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  30. 30.

    Molchanov, I., Cascos, I.: Multivariate risk measures: a constructive approach based on selections. Math. Finance 26, 867–900 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  31. 31.

    Rockafellar, R.T.: Conjugate Duality and Optimization. Society for Industrial and Applied Mathematics, Philadelphia (1974)

    Book  MATH  Google Scholar 

  32. 32.

    Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, Berlin (2009)

    MATH  Google Scholar 

  33. 33.

    Rüschendorf, L.: Law invariant convex risk measures for portfolio vectors. Stat. Decis. 24, 97–108 (2006)

    MathSciNet  MATH  Google Scholar 

  34. 34.

    Zălinescu, C.: Convex Analysis in General Vector Spaces. World Scientific, Singapore (2002)

    Book  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pablo Koch-Medina.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Arduca, M., Koch-Medina, P. & Munari, C. Dual representations for systemic risk measures based on acceptance sets. Math Finan Econ 15, 155–184 (2021). https://doi.org/10.1007/s11579-019-00250-0

Download citation

Keywords

  • Systemic risk
  • Macroprudential regulation
  • Risk measures
  • Dual representations

JEL Classification

  • C02
  • G18
  • G32