Skip to main content
Log in

Impact of contingent payments on systemic risk in financial networks

Mathematics and Financial Economics Aims and scope Submit manuscript

Cite this article


In this paper we study the implications of contingent payments on the clearing wealth in a network model of financial contagion. We consider an extension of the Eisenberg–Noe financial contagion model in which the nominal interbank obligations depend on the wealth of the firms in the network. We first consider the problem in a static framework and develop conditions for existence and uniqueness of solutions as long as no firm is speculating on the failure of other firms. In order to achieve existence and uniqueness under more general conditions, we introduce a dynamic framework. We demonstrate how this dynamic framework can be applied to problems that were ill-defined in the static framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3


  1. Acharya, V., Bisin, A.: Counterparty risk externality: centralized versus over-the-counter markets. J. Econ. Theory 149, 153–182 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aliprantis, C.D., Border, Kim C.: Infinite Dimensional Analysis: A Hitchhiker’s Guide. Springer, New York (2007)

    MATH  Google Scholar 

  3. Amini, H., Filipović, D., Minca, A.: Systemic risk with central counterparty clearing. Swiss Finance Institute Research Paper No. 13-34, Swiss Finance Institute (2015)

  4. Amini, H., Filipović, D., Minca, Andreea: Uniqueness of equilibrium in a payment system with liquidation costs. Oper. Res. Lett. 44(1), 1–5 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Awiszus, K., Weber, S.: The joint impact of bankruptcy costs, cross-holdings and fire sales on systemic risk in financial networks. Probab. Uncertain. Quant. Risk 2(9), 1–38 (2017)

    MathSciNet  Google Scholar 

  6. Banerjee, T., Bernstein, A., Feinstein, Z.: Dynamic Clearing and Contagion in Financial Networks. In: Working paper (2018)

  7. Barucca, P., Bardoscia, M., Caccioli, F., D’Errico, M., Visentin, G., Battiston, S., Caldarelli, G.: Network Valuation in Financial Systems. In: Working paper (2016)

  8. Blanchet, J., Shi, Y.: Stochastic Risk Networks: Modeling, Analysis and Efficient Monte Carlo. Working paper (2012)

  9. Capponi, A., Chen, P.-C.: Systemic risk mitigation in financial networks. J. Econ. Dyn. Control 58, 152–166 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Capponi, A., Chen, P.-C., Yao, D.D.: Liability concentration and systemic losses in financial networks. Oper. Res. 64(5), 1121–1134 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, N., Liu, X., Yao, D.D.: An optimization view of financial systemic risk modeling: the network effect and the market liquidity effect. Oper. Res. 64(5), 1089–1108 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cifuentes, R., Shin, H.S., Ferrucci, G.: Liquidity risk and contagion. J. Eur. Econ. Assoc. 3(2–3), 556–566 (2005)

    Article  Google Scholar 

  13. Cont, R.: The end of the waterfall: default resources of central counterparties. J. Risk Manag. Financ. Inst. 8(4), 365–389 (2015)

    Google Scholar 

  14. Cont, R., Fournié, D.-A.: Functional Itô calculus and stochastic integral representation of martingales. Ann. Probab. 41(1), 109–133 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cont, R., Minca, A.: Credit default swaps and systemic risk. Ann. Oper. Res. 247, 523–547 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cont, R., Moussa, A., Santos, E.B.: Network structure and systemic risk in banking systems. In: Handbook on Systemic Risk, pp. 327–368. Cambridge University Press (2013)

  17. Eisenberg, L., Noe, T.H.: Systemic risk in financial systems. Manag. Sci. 47(2), 236–249 (2001)

    Article  MATH  Google Scholar 

  18. Elliott, M., Golub, B., Jackson, M.O.: Financial networks and contagion. Am. Econ. Rev. 104(10), 3115–3153 (2014)

    Article  Google Scholar 

  19. Elsinger, H.: Financial Networks, Cross Holdings, and Limited Liability, vol. 156. Österreichische Nationalbank (Austrian Central Bank), Wien-Alsergrund (2009)

    Google Scholar 

  20. Elsinger, H., Lehar, A., Summer, M.: Risk assessment for banking systems. Manag. Sci. 52(9), 1301–1314 (2006)

    Article  MATH  Google Scholar 

  21. Feinstein, Z.: Financial contagion and asset liquidation strategies. Oper. Res. Lett. 45(2), 109–114 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Feinstein, Z.: Obligations with physical delivery in a multi-layered financial network. In: Working Paper (2018)

  23. Feinstein, Z., El-Masri, F.: The effects of leverage requirements and fire sales on financial contagion via asset liquidation strategies in financial networks. Stat. Risk Model 34(3–4), 113–139 (2017)

    MathSciNet  MATH  Google Scholar 

  24. Feinstein, Z., Pang, W., Rudloff, B., Schaanning, E., Sturm, S., Wildman, M.: Sensitivity of the Eisenberg–Noe clearing vector to individual interbank liabilities. SIAM J. Financ. Math. 9(4), 1286–1325 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  25. Feinstein, Z., Rudloff, B., Weber, S.: Measures of systemic risk. SIAM J. Financ. Math. 8(1), 672–708 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gai, P., Kapadia, S.: Contagion in financial networks. In: Bank of England Working Papers 383. Bank of England (2010)

  27. Glasserman, P., Young, H.P.: How likely is contagion in financial networks? J. Bank. Finance 50, 383–399 (2015)

    Article  Google Scholar 

  28. Heise, S., Kühn, R.: Derivatives and credit contagion in interconnected networks. Eur. Phys. J. B 85(4), 115 (2012)

    Article  Google Scholar 

  29. Klages-Mundt, A., Minca, A.: Cascading losses in reinsurance networks. In: Working Paper (2018)

  30. Kusnetsov, M., Veraart, L.A.M.: Interbank clearing in financial networks with multiple maturities. In: Working Paper (2018)

  31. Leduc, Matt, Poledna, S., Thurner, S.: Systemic risk management in financial networks with credit default swaps. J. Netw. Theory Finance 3(3), 19–39 (2017)

    Google Scholar 

  32. Liu, M., Staum, J.: Sensitivity analysis of the Eisenberg–Noe model of contagion. Oper. Res. Lett. 35(5), 489–491 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Markose, S.M., Giansante, S., Gatkowski, M., Shaghaghi, A.R.: Too interconnected to fail: Financial contagion and systemic risk in network model of CDS and other credit enhancement obligations of us banks. In: Technical Report DP 683, Economics Department, University of Essex (2010)

  34. Milgrom, P., Roberts, J.: Comparing equilibria. Am. Econ. Rev. 84(3), 441–459 (1994)

    Google Scholar 

  35. Murphy, D.: The systemic risk of otc derivatives central clearing. J. Risk Manag. Financ. Inst. 5(3), 319–334 (2012)

    Google Scholar 

  36. Nier, E., Yang, J., Yorulmazer, T., Alentorn, A.: Network models and financial stability. J. Econ. Dyn. Control 31(6), 2033–2060 (2007)

    Article  MATH  Google Scholar 

  37. Paddrik, M.E., Rajan, S., Young, P.: Contagion in the CDS market. In: OFR Working Paper 16-12, Office of Financial Research (2016)

  38. Puliga, M., Caldarelli, G., Battiston, S.: Credit default swaps networks and systemic risk. Sci. Rep. 4, 6822 (2014)

    Article  Google Scholar 

  39. Rogers, L.C.G., Veraart, L.A.M.: Failure and rescue in an interbank network. Manag. Sci. 59(4), 882–898 (2013)

    Article  Google Scholar 

  40. Schuldenzucker, S., Seuken, S., Battiston, S.: Default ambiguity: credit default swaps create new systemic risks in financial networks. In: Working Paper (2017)

  41. Schuldenzucker, S., Seuken, S., Battiston, S.: Finding clearing payments in financial networks with credit default swaps is PPAD-complete. In: Papadimitriou, C.H. (ed), 8th Innovations in Theoretical Computer Science Conference (ITCS 2017), volume 67 of Leibniz International Proceedings in Informatics (LIPIcs), pp. 32:1–32:20, Dagstuhl, Germany, (2017). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik

  42. Upper, C.: Simulation methods to assess the danger of contagion in interbank markets. J. Financ. Stab. 7(3), 111–125 (2011)

    Article  Google Scholar 

  43. Veraart, L.A.M.: Distress and default contagion in financial networks. In: Working paper (2018)

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Zachary Feinstein.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Proof of Proposition 3.17

A Proof of Proposition 3.17


Firstly, as in (6), the clearing wealths as a function of initial endowments are defined by

$$\begin{aligned} V(x) = x + \Pi (V(x))^\top [\bar{p}(V(x)) - V(x)^-]^+ - \bar{p}(V(x)). \end{aligned}$$

We will prove continuity by utilizing the closed graph theorem (see, e.g., [2, Theorem 2.58]) noting that Proposition 3.6 provides us with the condition that the clearing wealths map into a compact set. Theorem 4 of [34] immediately provides the monotonicity of the clearing wealths.

Fix \(x \in \mathbb {R}^{n+1}_+\) and let \(\mathcal {X}= x + [-1,1]^{n+1}\) be a closed compact neighborhood of x in the full Euclidean space \(\mathbb {R}^{n+1}\). Then we can define \(V^x: \mathcal {X}\rightarrow \mathbb {R}^{n+1}\) as the restriction (and possible expansion to negative terms) of the domain of V to \(\mathcal {X}\). The graph of \(V^x\) is given by:

$$\begin{aligned} {\text {graph}}V^x= & {} \Bigg \{(\hat{x},\hat{V}) \in \mathcal {X}\times \prod _{i \in \mathcal {N}_0} \left[ x_i-1-\sum _{j \in \mathcal {N}_0} \bar{L}_{ij} , x_i+1+\sum _{j \in \mathcal {N}} \bar{L}_{ji}\right] \; | \; \hat{V}\\= & {} \hat{x} + \Pi (\hat{V})^\top [\bar{p}(\hat{V}) - \hat{V}^-]^+ - \bar{p}(\hat{V})\Bigg \}. \end{aligned}$$

To see that \({\text {graph}}V^x\) is closed let \((\hat{x}^k,\hat{V}^k)_{k \in \mathbb {N}} \subseteq {\text {graph}}V^x \rightarrow (\hat{x},\hat{V})\), then immediately

$$\begin{aligned} \hat{V}= & {} \lim _{k \rightarrow \infty } \hat{V}^k = \lim _{k \rightarrow \infty } \left[ \hat{x}^k + \Pi (\hat{V}^k)^\top [\bar{p}(\hat{V}^k) - (\hat{V}^k)^-]^+ - \bar{p}(\hat{V}^k)\right] \\= & {} \hat{x} + \Pi (\hat{V})^\top [\bar{p}(\hat{V}) - \hat{V}^-]^+ - \bar{p}(\hat{V}) \end{aligned}$$

by continuity of the nominal liabilities matrix L. Therefore by the closed graph theorem we immediately recover that \(V^x\) is continuous for any \(x \in \mathbb {R}^{n+1}_+\), which implies that V is continuous at any x as well and thus \(V: \mathbb {R}^{n+1}_+ \rightarrow \mathbb {R}^{n+1}\) is a continuous mapping. \(\square \)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, T., Feinstein, Z. Impact of contingent payments on systemic risk in financial networks. Math Finan Econ 13, 617–636 (2019).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


Mathematics Subject Classification