Skip to main content
Log in

Arbitrage and utility maximization in market models with an insider

  • Published:
Mathematics and Financial Economics Aims and scope Submit manuscript

Abstract

We study arbitrage opportunities, market viability and utility maximization in market models with an insider. Assuming that an economic agent possesses an additional information in the form of an \(\mathscr {F}_T\)-measurable discrete random variable G, we give criteria for the no unbounded profits with bounded risk property to hold, characterize optimal arbitrage strategies, and prove duality results for the utility maximization problem faced by the insider. Examples of markets satisfying NUPBR yet admitting arbitrage opportunities are provided. For the case when G is a continuous random variable, we consider the notion of no asymptotic arbitrage of the first kind (NAA1) and give an explicit construction for unbounded profits if NAA1 fails.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The modified Bessel functions of the first kind is defined by the series representation \(I_{\alpha }(x) = \sum _{m \ge 0}\frac{1}{m!\Gamma (m+\alpha +1)}\left( \frac{x}{2} \right) ^{2m+\alpha }\), for a real number \(\alpha \) which is not a negative integer, and satisfies \(I_{-n}(x) = I_n(x)\) for integer n.

References

  1. Acciaio, B., Fontana, C., Kardaras, C.: Arbitrage of the first kind and filtration enlargements in semimartingale financial models. Stochast. Process. Appl. 126, 1761–1784 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aksamit, A., Choulli, T., Jeanblanc, M.: On an optional semimartingale decomposition and the existence of a deflator in an enlarged filtration, in In Memoriam Marc Yor-Séminaire de Probabilités XLVII, pp. 187–218. Springer (2015)

  3. Amendinger, J., Imkeller, P., Schweizer, M.: Additional logarithmic utility of an insider. Stochast. Process. Appl. 75, 263–286 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Amendinger, J., Becherer, D., Schweizer, M.: A monetary value for initial information in portfolio optimization. Finance Stochast. 7, 29–46 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ankirchner, S., Zwierz, J.: Initial enlargement of filtrations and entropy of Poisson compensators. J. Theor. Probab. 24, 93–117 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ankirchner, S., Dereich, S., Imkeller, P.: The Shannon information of filtrations and the additional logarithmic utility of insiders. Ann. Probab. 34, 743–778 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Baldeaux, J., Platen, E.: Liability driven investments under a benchmark based approach. Preprint (2013)

  8. Bremaud, P.: Point Processes and Queues: Martingale Dynamics. Springer, Berlin (1981)

    Book  MATH  Google Scholar 

  9. Chau, N.H.: A Study of Arbitrage Opportunities in Financial Markets without Martingale Measures. Ph.D. thesis, Università degli Studi di Padova / Université Paris Diderot, Paris 7 (2016)

  10. Chau, H.N., Tankov, P.: Market models with optimal arbitrage. SIAM J. Financ. Math. 6, 66–85 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Choulli, T., Deng, J., Ma, J.: How non-arbitrage, viability and numéraire portfolio are related. Finance Stochast. 19(4), 719–741 (2015)

    Article  MATH  Google Scholar 

  12. Danilova, A., Monoyios, M., Ng, A.: Optimal investment with inside information and parameter uncertainty. Math. Financ. Econ. 3, 13–38 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Delbaen, F., Schachermayer, W.: A general version of the fundamental theorem of asset pricing. Math. Ann. 300, 463–520 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  14. Delbaen, F., Schachermayer, W.: The no-arbitrage property under a change of numéraire. Stochast. Stochast. Rep. 53(3–4), 213–226 (1995)

    Article  MATH  Google Scholar 

  15. Fernholz, D., Karatzas, I.: On optimal arbitrage. Ann. Appl. Probab. 20, 1179–1204 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fontana, C.: No-arbitrage conditions and absolutely continuous changes of measure. In: Hillairet, C., Jeanblanc, M., Jiao, Y. (eds.) Arbitrage, Credit and Informational Risks: Peking University Series in Mathematics, vol. 5, pp. 3–18. World Scientific, Singapore (2014)

    Chapter  Google Scholar 

  17. Fontana, C.: Weak and strong no-arbitrage conditions for continuous financial markets. Int. J. Theor. Appl. Finance 18, 1550005 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Grorud, A., Pontier, M.: Insider trading in a continuous time market model. Int. J. Theor. Appl. Finance 1, 331–347 (1998)

    Article  MATH  Google Scholar 

  19. Imkeller, P., Perkowski, N.: The existence of dominating local martingale measures. Finance Stochast. 19(4), 685–717 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Imkeller, P., Pontier, M., Weisz, F.: Free lunch and arbitrage possibilities in a financial market model with an insider. Stochast. Process. Appl. 92, 103–130 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jacod, J.: Grossissement initial, hypothèse (H\(^{\prime }\)) et théorème de Girsanov, in Grossissements de filtrations: exemples et applications. Springer, pp. 15–35 (1985)

  22. Jacod, J.: Intégrales stochastiques par rapport à une semimartingale vectorielle et changements de filtration, Séminaire de Probabilités XIV 1978/79, pp. 161–172. Springer, Berlin (1980)

    Google Scholar 

  23. Jeanblanc, M., Yor, M., Chesney, M.: Mathematical Methods for Financial Markets. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  24. Jeulin, T.: Semi-Martingales et Grossissement d’une Filtration, vol. 833 of Lecture Notes in Mathematics. Springer (1980)

  25. Kabanov, Y., Kardaras, C., Song, S.: No arbitrage and local martingale deflators. ArXiv preprint arXiv:1501.04363 (2015)

  26. Kabanov, Y.M.: On the FTAP of Kreps–Delbaen–Schachermayer, in Statistics and Control of Random Processes, pp. 191–203. World Scientific, The Liptser Festschrift (1997)

    MATH  Google Scholar 

  27. Kabanov, Y.M., Kramkov, D.O.: Large financial markets: asymptotic arbitrage and contiguity. Theory Probab. Appl. 39, 182–187 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  28. Karatzas, I., Kardaras, C.: The numéraire portfolio in semimartingale financial models. Finance Stochast. 11, 447–493 (2007)

    Article  MATH  Google Scholar 

  29. Kardaras, C.: Market viability via absence of arbitrage of the first kind. Finance Stochast. 16, 651–667 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kardaras, C., Kreher, D., Nikeghbali, A.: Strict local martingales and bubbles. Ann. Appl. Probab. 25, 1827–1867 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kohatsu-Higa, A., Yamazato, M.: Insider models with finite utility in markets with jumps. Appl. Math. Optim. 64, 217–255 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kramkov, D., Schachermayer, W.: The asymptotic elasticity of utility functions and optimal investment in incomplete markets. Ann. Appl. Probab. 9, 904–950 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  33. Levental, S., Skorohod, A.V.: A necessary and sufficient condition for absence of arbitrage with tame portfolios. Ann. Appl. Probab. 5, 906–925 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  34. Meyer, P.-A., Jacod, J.: Sur un théoreme de. Séminaire de probabilités de Strasbourg 12, 57–60 (1978)

    Google Scholar 

  35. Mostovyi, O.: Necessary and sufficient conditions in the problem of optimal investment with intermediate consumption. Finance Stochast. 19, 135–159 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Pikovsky, I., Karatzas, I.: Anticipative portfolio optimization. Adv. Appl. Probab. 28, 1095–1122 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  37. Protter, P.: Stochastic Integration and Differential Equations, 2nd edn. Springer, Berlin (2003)

    Google Scholar 

  38. Ruf, J., Runggaldier, W.: A systematic approach to constructing market models with arbitrage. In: Hillairet, C., Jeanblanc, M., Jiao, Y. (eds.) Arbitrage, Credit and Informational Risks: Peking University Series in Mathematics, vol. 5, pp. 19–28. World Scientific, Singapore (2014)

    Chapter  Google Scholar 

  39. Song, S.: An alternative proof of a result of Takaoka. arXiv:1306.1062 (2013)

  40. Takaoka, K., Schweizer, M.: A note on the condition of no unbounded profit with bounded risk. Finance Stochast. 18, 393–405 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Tankov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

The research of Chau Ngoc Huy was supported by Natixis Foundation for Quantitative Research and the “Lendület” Grant LP2015-6 of the Hungarian Academy of Sciences. The research of Peter Tankov was supported by the chair “Financial Risks” sponsored by Société Générale. We thank the referees for helpful comments on the previous version of this paper.

Appendix

Appendix

Lemma 4.11

Assume that XY are two independent exponential random variables with parameters \(\alpha , \beta \), respectively. Then the random variable \(Z = \frac{\alpha X}{\beta Y}\) has density \(1/(1+ z)^2.\)

Proof

For \(z > 0\). we compute the cumulative distribution of Z

$$\begin{aligned} \mathbb {P}[Z \le z]&= \mathbb {P}\left[ Y \ge \frac{\alpha X}{\beta z}\right] = \int \limits _0^{\infty } {\left( \int \limits _{(\alpha x) / (\beta z)}^{\infty } {\beta {e}^{-\beta y}dy} \right) \alpha {e}^{-\alpha x}{d}x}\\&= \int \limits _0^{\infty } {{e}^{\frac{-\alpha x}{z}} \alpha {e}^{-\alpha x}{d}x}= \frac{z}{1 + z}. \end{aligned}$$

The density of Z is obtained by taking derivative of the cumulative distribution of Z with respect to z. \(\square \)

Definition 4.12

(Optional projection—Definition 5.2.1 of [23]) Let X be a bounded (or positive) process, and \(\mathbb {F}\) a given filtration. The optional projection of X is the unique optional process \({}^{o}X\) which satisfies

$$\begin{aligned} \mathbb {E}[X_{\tau }1_{\{\tau<\infty \}}] ={}^{o}X_{\tau }1_{\{\tau < \infty \}} \end{aligned}$$

almost surely for any \(\mathbb {F}\)-stopping time \(\tau .\)

The following result helps us to find the compensator of a process when passing to smaller filtrations.

Lemma 4.13

Let \(\mathbb {G}, \mathbb {H}\) be filtrations such that \(\mathscr {G}_t \subset \mathscr {H}_t,\) for all \(t \in [0,T]\). Let X be a \(\mathbb {G}\)-adapted process. Suppose that the process \(M_t := X_t - \int \nolimits _0^t {\lambda _udu}\) is a \(\mathbb {H}\)-martingale, where \(\lambda \ge 0\). Then the process \(M^G_t :=X_t - \int \nolimits _0^t {^{o}\lambda _u du}\) is a \(\mathbb {G}\)-martingale, where \(^{o}\lambda \) is the optional projection of \(\lambda \) onto \(\mathbb {G}\).

Proof

Since \(\lambda _u \ge 0,\) the optional projection \(^{o}\lambda \) exists and for fixed u, it holds that \(^{o}\lambda _u = \mathbb {E}[\lambda _u| \mathscr {G}_u]\) almost surely. If \(0\le s <t\) and H is bounded and \(\mathscr {G}_s\)-measurable, then, by Fubini’s Theorem

$$\begin{aligned} \mathbb {E}\left[ H\left( M^G_t - M^G_s\right) \right]&= \mathbb {E}[H(X_t - X_s)] - \int \limits _s^t {\mathbb {E}[H\mathbb {E}[\lambda _u|\mathscr {G}_u]]du}\\&= \mathbb {E}[H(X_t - X_s)] - \int \limits _s^t {\mathbb {E}[H\lambda _u]du}\\&= \mathbb {E}[H(M_t - M_s)] = 0. \end{aligned}$$

Hence \(M^G\) is a \(\mathbb {G}\)-martingale.\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chau, H.N., Runggaldier, W.J. & Tankov, P. Arbitrage and utility maximization in market models with an insider. Math Finan Econ 12, 589–614 (2018). https://doi.org/10.1007/s11579-018-0217-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11579-018-0217-4

Keywords

JEL Classification

Navigation