Skip to main content
Log in

Sensitivity analysis for marked Hawkes processes: application to CLO pricing

  • Published:
Mathematics and Financial Economics Aims and scope Submit manuscript

Abstract

This paper deals with a model for pricing Collateralized Loan Obligations, where the underlying credit risk is driven by a marked Hawkes process, involving both clustering effects on defaults and random recovery rates. We provide a sensitivity analysis of the CLO price with respect to the parameters of the Hawkes process using a change of probability and a variational approach. We also provide a simplified version of the model where the intensity of the Hawkes process is taken as the instantaneous default rate. In this setting, we give a moment-based formula for the expected survival probability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hawkes, A.G.: Point spectra of some mutually exciting point processes. J. R. Stat. Soc. 33, 438–443 (1971)

    MathSciNet  MATH  Google Scholar 

  2. Hawkes, A.G., Oakes, D.: A cluster process representation of a self-exciting point process. J. Appl. Probab. 11(3), 495–503 (1974)

    Article  MATH  Google Scholar 

  3. Filimonov, V., Sornette, D.: Apparent criticality and calibration issues in the hawkes self-excited point process model: application to high-frequency financial data. Quant. Finance 15(8), 1293–1314 (2015)

    Article  MathSciNet  Google Scholar 

  4. Ait-Sahalia, Y., Yu, J.: High frequency market microstructure noise estimates and liquidity measures. Ann. Appl. Stat. 3(1), 422–457 (2009). 03

    Article  MathSciNet  MATH  Google Scholar 

  5. Donatien, H.: A model for interest rates with clustering effects. Quant. Finance 16(8), 1203–1218 (2016)

    Article  MathSciNet  Google Scholar 

  6. Jiao, Y., Ma, C., Scotti, S.: Alpha-CIR model with branching processes in sovereign interest rate modelling. Finance Stochast. 21(3), 789–813 (2017)

    Article  MATH  Google Scholar 

  7. Jiao, Y., Ma, C., Scotti, S., Sgarra, C.: A branching process approach to power markets. Energy Economics (2018). https://doi.org/10.1016/j.eneco.2018.03.002

  8. Filimonov, V., Bicchetti, D., Maystre, N., Sornette, D.: Quantification of the high level of endogeneity and of structural regime shifts in commodity markets. J. Int. Money Finance 42, 174–192 (2014)

    Article  Google Scholar 

  9. Bacry, E., Muzy, J.F.: Hawkes model for price and trades high-frequency dynamics. Quant. Finance 14(7), 1147–1166 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Peng, X.H., Kou, S.: Connecting the top-down to the bottom-up: Pricing cdo under a conditional survival (cs) model. In: Proceedings of the 40th Conference on Winter Simulation. Winter Simulation Conference, pp. 578–586 (2008)

  11. Errais, E., Giesecke, K., Goldberg, L.R.: Affine point processes and portfolio credit risk. SIAM J. Financ. Math. 1(1), 642–665 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ding, X., Giesecke, K., Goldberg, L.: A top down approach to multi name credit. Oper. Res. 59(2), 283–300 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bernis, G.: Mark-to-model for cash CDOs through indifference pricing. Quant. Finance 12(1), 39–48 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Laurent, J.P., Gregory, J.: Basket default swaps, cdos and factor copulas. J. Risk 7(4), 103–122 (2003)

    Google Scholar 

  15. Sirignano, J.A., Tsoukalas, G., Giesecke, K.: Large-scale loan portfolio selection. Oper. Res. 64(6), 1239–1255 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Sirignano, J.A., Giesecke, K.: Risk analysis for large pools of loans. Manag. Sci. (forthcoming) (2017)

  17. Chang, Y.P., Hung, M.C., Liu, C.C.: Analytical approximation method of collateralized debt obligation pricing in one-factor models. In: 2007 International Conference on Convergence Information Technology (ICCIT 2007), pp. 677–680 (2007)

  18. Fournié, E., Lasry, J.M., Lebuchoux, J., Lions, P.L., Touzi, N.: Applications of malliavin calculus to monte carlo methods in finance. Finance Stochast. 3, 391–412 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Giesecke, K., Zhu, S.: Transform analysis for point processes and applications in credit risk. Math. Finance 23(4), 742–762 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Last, G., Brandt, A.: Marked Point Processes on the Real Line the Dynamic Approach. Springer, New York (1995)

    MATH  Google Scholar 

  21. Dellacherie, C., Meyer, P.A.: Probabilités et Potentiels. chapitre I à IV. Hermann, Paris (1978)

    Google Scholar 

  22. Brémaud, P., Massoulié, L.: Imbedded construction of stationary sequences and point processes with a random memory. Queueing Syst. 17, 213–234 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ogata, Y.: The asymptotic behaviour of maximum likelihood estimators for stationary processes. Ann. Inst. Stat. Math. 30, 243–261 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  24. Callegaro, G., Gaïgi, M., Scotti, S., Sgarra, C.: Optimal investment in markets with over and under-reaction to information. Math. Financ. Econ. 11(3), 299–322 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Bacry, E., Mastromatteo, I., Muzy, J.F.: Hawkes processes in finance. Mark. Microstruct. Liq. 1(01), 1550005 (2015)

    Article  Google Scholar 

  26. Protter, Ph: Stochastic Integration and Differential Equations. Springer, New York (1992)

    Google Scholar 

  27. Heath, D., Jarrow, R., Morton, A.: Bond pricing and the term structure of interest rates a new methodology. Econometrica 60(1), 77–105 (1992)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The opinions and views expressed in this document are those of the authors and do not necessarily reflect those of Natixis Asset Management. The authors wish to thank Nicolas Bouleau for fruitful discussions on the sensitivity analysis for Poisson processes. The research of the third author is supported by Institut Europlace de Finance within the project “Clusters and Information Flow: Modeling, Analysis and Implications”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Scotti.

Appendices

Appendices

1.1 Proof of Proposition 2

Proof

Let \(\delta \in ]0, \overline{\delta }]\). The first step consists in a Taylor expansion of second order (in \(\delta \)) of \(g(\delta ) := L[\lambda +\delta h](T_n)\). We have

$$\begin{aligned} \vert g(\delta ) - g(0) - \delta \dot{g}(0) \vert \le \frac{\delta ^2}{2}\sup _{a \in [0, \overline{\delta }]} \vert \ddot{g}(a) \vert \end{aligned}$$

With these notations, we omit the dependency in \(T_1, \dots , T_n\), that will be made clear in the next equations. Straightforward calculation yields

$$\begin{aligned} \begin{aligned} \dot{g}(\delta )&= \exp \left( -\int _0^{T_n}(\lambda (s) + \delta h(s)-1)ds\right) \sum _{k=1}^n\prod _{j\not = k} h(T_k)\left( \lambda (T_j) + \delta h(T_j)\right) \\&\quad - g(\delta ) \int _0^{T_n}h(s)ds \\ \ddot{g}(\delta )&= -2\left( \int _0^{T_n}h(s)ds\right) \dot{g}(\delta ) -\left( \int _0^{T_n}h(s)ds\right) ^2g(\delta ) \\&\quad +\exp \left( -\int _0^{T_n}(\lambda (s) + \delta h(s)-1)ds\right) \sum _{k=1}^nh(T_k)\sum _{j\not =k}h(T_j)\prod _{{\mathop {i \not = j}\limits ^{i\not = k}}}\left( \lambda (T_i) + \delta h(T_i)\right) \end{aligned} \end{aligned}$$

Now, we can turn to the uniform integrability of the second order derivative for \(\delta \in [0, \overline{\delta }]\). For this purpose, we notice that \(\lambda (\cdot ) + \delta h(\cdot )\) is an element of \({\mathcal {D}}(m^{'},a^{'}, b^{'})\), with \(m^{'} := \lambda _0\), \(a^{'}:=\lambda _0+a\) and \(b^{'}:=\overline{\alpha } + b \overline{\delta }\). We are now in position to provide boundaries for g, \(\dot{g}\) and, eventually, \(\ddot{g}\). We obtain successively

$$\begin{aligned} \begin{aligned}&\sup _{\delta \in [0, \overline{\delta }]} \vert g(\delta ) \vert \le e^{-(\lambda _0-1) T_n}(a^{'}+b^{'}n)^n \\&\sup _{\delta \in [0, \overline{\delta }]} \vert \dot{g}(\delta ) \vert \le e^{-(\lambda _0-1) T_n}(T_n+1)(a^{'}+b^{'}n)^{n+1} \\&\sup _{\delta \in [0, \overline{\delta }]} \vert \ddot{g}(\delta ) \vert \le e^{-(\lambda _0-1) T_n}\left[ (3T_n^2+2T_n)(a^{'}+b^{'}n)^{n+2} +n(n-1)(a^{'}+b^{'}n)^{n} \right] \end{aligned} \end{aligned}$$

Now, we need to check that elements of the form \(T_n^2e^{-(\lambda _0-1) T_n}\) are \(\mathbb {P}\)-integrable. The law of \(T_n\) under \(\mathbb {P}\) is a Gamma law \(\Gamma (n,1)\), thus

$$\begin{aligned} \begin{aligned} \mathbb {E}^\mathbb {P}\left[ T_n^2e^{-(\lambda _0-1) T_n}\right]&= \int _0^{+\infty }x^2e^{-(\lambda _0-1) x}\frac{e^{-x}x^{n-1}}{n!}dx= \int _0^{+\infty }x^2\frac{e^{-\lambda _0x}x^{n-1}}{n!}dx\\&= \lambda _0^{n-1}(n^2+n) \end{aligned} \end{aligned}$$

where we have used the formula of the second order moment of a Gamma law. With these elements in hand, we can state that there exists a constant C, depending only on n, \(m^{'}\), \(a^{'}\), \(b^{'}\) and \(\lambda _0\), such that

$$\begin{aligned} \left| \mathbb {E}^\mathbb {P}\left[ g(\delta ) - g(0) - \delta \dot{g}(0)\right] \right| \le \frac{\delta ^2}{2} C \end{aligned}$$

Since f is uniformly bounded, this implies that the directional derivative of \(I[\lambda ](f)\) (on the right) in the direction h exists and is given by (6) with

$$\begin{aligned} \begin{aligned} G(T_n)&= \exp \left( -\int _0^{T_n}(\lambda (s)-1)ds\right) \sum _{k=1}^nh(T_k)\prod _{j\not = k} \lambda (T_j)\\&\quad - L[\lambda ](T_n) \int _0^{T_n}h(s)ds \end{aligned} \end{aligned}$$
(17)

We factorize \(L[\lambda ](T_n)\) in (17), which yields the exact form of \(G(T_n)\) if we notice that \(\sum _{k=1}^n\frac{h(T_k)}{\lambda (T_k)} = \int _0^{T_n}\frac{h(s)}{\lambda (s)}\nu (ds)\). \(\square \)

1.2 Proof of Lemma 3

We shall prove the result by recurrence on n. The case \(n=1\) is given by Corollary 3. Assume that the property holds for any \(1\le k\le n-1\). Now, set, for any \(t \ge 0\),

$$\begin{aligned} \Upsilon _n(t) :=n \, \lambda _0\beta \, {m}_{n-1}(t)+ \sum _{k=1}^{n-1}{n \atopwithdelims ()k-1}{m}_k(t)\alpha ^{n-k+1} \end{aligned}$$

By recurrence, we know that the limit of \(\Upsilon _n(t)\), when t tends to \(+\infty \) exists. Let us denote it by \(\overline{\Upsilon }_n\). By Lemma 2, we can step \(m_n(t) = g(t)e^{n(\alpha -\beta )t}\) obtaining \(\dot{g}(t) = \Upsilon _n(t) e^{-n(\alpha -\beta )t}\). By the recurrence property, we have

$$\begin{aligned} \frac{\dot{g}(t)}{e^{-n(\alpha -\beta )t}} \underset{t \rightarrow +\infty }{\longrightarrow } \overline{\Upsilon }_n \end{aligned}$$

Then, by L’Hôpital’s rule, we have

$$\begin{aligned} \frac{n(\beta -\alpha ){g}(t)}{e^{-n(\alpha -\beta )t}-1} \underset{t \rightarrow +\infty }{\longrightarrow } \overline{\Upsilon }_n \end{aligned}$$

Hence, we have the equivalence (15) and \(\overline{m}_n:= \frac{\overline{\Upsilon }_n}{n(\beta -\alpha )}\).

Now, let us prove that \(m_n\) is increasing. For this purpose, note

$$\begin{aligned} \frac{\dot{g}(t)}{g(t)} = \frac{\Upsilon _n(t)e^{-n(\alpha -\beta )t}}{\lambda _0^n + \int _0^t\Upsilon _n(s)e^{-n(\alpha -\beta )s}ds} \end{aligned}$$

By recurrence assumption, \(\Upsilon _n\) is increasing as a sum of increasing functions (all the coefficients are positive). Then

$$\begin{aligned} \frac{\dot{g}(t)}{g(t)} > \frac{\Upsilon _n(t)e^{-n(\alpha -\beta )t}}{\lambda _0^n + \Upsilon _n(t) \frac{e^{-n(\alpha -\beta )t}-1}{n(\beta -\alpha )} } \end{aligned}$$

Hence, we have \(\frac{\dot{g}(t)}{g(t)} > n(\beta -\alpha )\) if, and only if, \(\Upsilon _n(t) > n(\beta -\alpha ) \lambda ^n_0\). As \(\Upsilon _n\) is increasing, it is sufficient to show that the condition holds for \(t=0\). In this case, we easily see that \(\Upsilon _n(0)> n\beta \lambda _0^n> n(\beta -\alpha ) \lambda _0^n\). Hence, \(\frac{\dot{g}(t)}{g(t)} > n(\beta -\alpha )\), which implies that \(m_n(t)\) is increasing. \(\Box \)

1.3 Proof of Proposition 4

According to Lemma 5, we only need to prove that the limit of \(u_n:=\frac{m_n(t)}{n!}\) is 0, when n goes to \(\infty \). First, let us rewrite \(u_n\) with Eq. (13). It yields

$$\begin{aligned} u_n = u_{n-1} \left[ \frac{\lambda _0\beta }{n(\beta -\alpha )} + \frac{n-1}{2n} \frac{\alpha ^2}{(\beta - \alpha )}\right] + \frac{1}{\beta -\alpha }\sum _{k=3}^n\frac{\alpha ^k}{k!} \frac{n-k+1}{n}u_{n-k+1} \end{aligned}$$

Set \(\delta >0\), such that \(\frac{\alpha ^2}{2(\beta - \alpha )} (1 + \delta +\frac{\alpha }{3}e^{\alpha } ) < 1\). There exists \(n_0\), such that, for any \(n \ge n_0\),

$$\begin{aligned} \frac{\lambda _0\beta }{n(\beta -\alpha )} + \frac{n-1}{2n} \frac{\alpha ^2}{(\beta - \alpha )}< \frac{\alpha ^2}{2(\beta - \alpha )} (1 + \delta ) < 1 \end{aligned}$$

Let us define \(K_p:=\max \left\{ u_k \; \vert \; 1\le k\le p \right\} \), for any \(p \ge 1\). For \(n \ge n_0\), we have

$$\begin{aligned} \begin{aligned} u_n&\le u_{n-1} \left[ \frac{\lambda _0\beta }{n(\beta -\alpha )} + \frac{n-1}{2n} \frac{\alpha ^2}{(\beta - \alpha )} \right] + \frac{\alpha ^3}{6(\beta -\alpha )} e^{\alpha }K_{n-1}\\&\le \frac{\alpha ^2}{2(\beta - \alpha )} \left( 1 + \delta +\frac{\alpha }{3} e^{\alpha }\right) K_{n-1} \end{aligned} \end{aligned}$$
(18)

where we have used the Taylor development of the exponential function at order 2. From Eq. (18), we deduce that \(K_n = K_{n-1}\). Therefore, the sequence \((K_p)_{p\ge n-1}\) is constant, equal to \(K>0\). Set

$$\begin{aligned} H_{\delta }:= \frac{\alpha ^2}{2(\beta - \alpha )} (1 + \delta )\,\, \text {and} \,\, \overline{H}_{\delta }:= \frac{\alpha ^2}{2(\beta - \alpha )} \left( 1 + \delta +\frac{\alpha }{3} e^{\alpha }\right) \end{aligned}$$

By Eq. (18), we have, for any \(n\ge n_0\),

$$\begin{aligned} u_{n} \le \overline{H}_{\delta } K. \end{aligned}$$

Set \(n\ge n_0+p\), with p such that \(\frac{K}{\beta -\alpha } \sum _{k=p+1}^{\infty }\frac{\alpha ^k}{k!} \le \frac{K\overline{H}_{\delta }^2}{n_0}\). Using again the Taylor expansion of the exponential and the inequality above, we have the following inequality, for any \(n \ge n_0+p\),

$$\begin{aligned} \begin{aligned} u_n&\le u_{n-1}H_{\delta } + \frac{\overline{H}_{\delta }K}{(\beta -\alpha )} \sum _{k=3}^p \frac{\alpha ^k}{k!} + \frac{K\overline{H}_{\delta }^2}{n_0} \le \overline{H}_{\delta }H_{\delta }K + \frac{\overline{H}_{\delta }K}{6(\beta -\alpha )} e^{\alpha } + \frac{K\overline{H}_{\delta }^2}{n_0}\\&\le \left( 1 + \frac{1}{n_0}\right) \overline{H}_{\delta }^2K \end{aligned} \end{aligned}$$

Set \(n_1:=n_0+p\). By iteration of this method, we can construct an increasing sequence of integer \((n_k)_{k\ge 1}\) such that, for any \(i \ge n_k\),

$$\begin{aligned} u_i \le \left( 1 + \frac{1}{n_{k-1}}\right) \overline{H}_{\delta }^{k+1}K \end{aligned}$$

The limit of the right hand side is 0, which yields the result. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernis, G., Salhi, K. & Scotti, S. Sensitivity analysis for marked Hawkes processes: application to CLO pricing. Math Finan Econ 12, 541–559 (2018). https://doi.org/10.1007/s11579-018-0215-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11579-018-0215-6

Keywords

Mathematics Subject Classification

Navigation