Mathematics and Financial Economics

, Volume 12, Issue 2, pp 193–217 | Cite as

Chisini means and rational decision making: equivalence of investment criteria

  • Carlo Alberto Magni
  • Piero Veronese
  • Rebecca Graziani


A plethora of tools are used for investment decisions and performance measurement, including net present value, internal rate of return, profitability index, modified internal rate of return, average accounting rate of return. All these and other known metrics are generally considered non-equivalent and some of them are regarded as unreliable or even naïve. Building upon Magni (Eng Econ 55(2):150–180, 2010a, Eng Econ 58(2):73–111, 2013)’s average internal rate of return, we show that the notion of Chisini mean enables these tools to be used as rational decision criteria. Specifically, we focus on 11 metrics and show that, if properly used, they all provide equivalent accept–reject decisions and equivalent project rankings. Therefore, the intuitive notion of mean is the founding basis of investment decision criteria.


Value creation Accept–reject decisions Project ranking Equivalence class Net present value Average internal rate of return 

JEL Classification

B41 C02 D53 G31 H43 M41 



The authors wish to thank an anonymous reviewer, who supplied invaluable remarks for revising the paper.


  1. 1.
    Athanasopoulos, P.J.: A note on the modified internal rate of return and investment criterion. Eng. Econ. 23(2), 131–133 (1977)Google Scholar
  2. 2.
    Barry, P.J., Robison, L.J.: Technical note: economic rates of return and investment analysis. Eng. Econ. 59(3), 231–256 (2014)CrossRefGoogle Scholar
  3. 3.
    Ben-Horin M., Kroll Y.: A simple intuitive NPV-IRR consistent ranking. Q. J. Econ. Finance (2017). doi: 10.1016/j.qref.2017.01.004
  4. 4.
    Berk, J., DeMarzo, P.: Corporate Finance. Global Edition, 3rd edn. Pearson, Harlow (2014)Google Scholar
  5. 5.
    Borgonovo, E., Gatti, S., Peccati, L.: What drives value creation in investment projects? An application of sensitivity analysis to project finance transactions. Eur. J. Oper. Res. 205(1), 227–236 (2010)Google Scholar
  6. 6.
    Brealey, R.A., Myers, S., Allen, F.: Principles of Corporate Finance. Global Edition. McGraw-Hill Irwin, Pennsylvania (2011)Google Scholar
  7. 7.
    Brounen, D., de Jong, A., Koedijk, K.: Corporate finance in Europe: confronting theory with practice. Financ. Manag. 33(4), 71–101 (2004)Google Scholar
  8. 8.
    Chisini, O.: Sul concetto di media on the concept of mean. Periodico di Matematiche 9(4), 106–116 (1929)MATHGoogle Scholar
  9. 9.
    de Finetti, B.: Sul concetto di media on the concept of mean. Giornale dell’Istituto Italiano degli Attuari 2(3), 369–396 (1931)MATHGoogle Scholar
  10. 10.
    Evans, D.A., Forbes, S.M.: Decision making and display methods: the case of prescription and practice in capital budgeting. Eng. Econ. 39(1), 87–92 (1993)CrossRefGoogle Scholar
  11. 11.
    Fabozzi, F.J., Peterson, P.P.: Financial Management and Analysis, 2nd edn. Wiley, Hoboken (2003)Google Scholar
  12. 12.
    Fischer, B.R., Wermers, R.: Performance Evaluation and Attribution of Security Portolios. Academic Press, Waltham (2013)Google Scholar
  13. 13.
    Fisher, F.M., McGowan, J.J.: On the misuse of accounting rates of return to infer monopoly profits. Am. Econ. Rev. 73(1), 82–97 (1983)Google Scholar
  14. 14.
    Graham, J., Harvey, C.: The theory and practice of corporate finance: evidence from the field. J. Financ. Econ. 60(2–3), 187–243 (2001)CrossRefGoogle Scholar
  15. 15.
    Gray, K.B., Dewar, R.B.K.: Axiomatic characterization of the time-weighted rate of return. Manag. Sci. 18(2), 32–35 (1971)CrossRefMATHGoogle Scholar
  16. 16.
    Graziani, R., Veronese, P.: How to compute a mean? The Chisini approach and its applications. Am. Stat. 63(1), 33–36 (2009)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Hazen, G.B.: A new perspective on multiple internal rates of return. Eng. Econ. 48(1), 31–51 (2003)CrossRefGoogle Scholar
  18. 18.
    Herroelen, W.S., Van Dommelen, P., Demeulemeester, E.L.: Project network models with discounted cash flows a guided tour through recent developments. Eur. J. Oper. Res. 100(1), 97–121 (1997)CrossRefMATHGoogle Scholar
  19. 19.
    Kay, A.: Accountants, too, could be happy in the golden age: the accountants rate of profit and the internal rate of return. Oxf. Econ. Pap. 28(3), 447–460 (1976)CrossRefGoogle Scholar
  20. 20.
    Kierulff, H.: MIRR: a better measure. Bus. Horizons 51(4), 321–329 (2008)CrossRefGoogle Scholar
  21. 21.
    Lima e Silva J., Sobreiro V.A., Kimura H.: Pre-purchase financing pool: Revealing the IRR problem. Eng. Econ. (2017). doi: 10.1080/0013791X.2017.1333662
  22. 22.
    Lin, A.Y.S.: The modified internal rate of return and investment criterion. Eng. Econ. 21(4), 237–247 (1976)CrossRefGoogle Scholar
  23. 23.
    Lindblom, T., Sjögren, S.: Increasing goal congruence in project evaluation by introducing a strict market depreciation schedule. Int. J. Prod. Econ. 121(2), 519–532 (2009)CrossRefGoogle Scholar
  24. 24.
    Magni C.A.: Accounting and economic measures: an integrated theory of capital budgeting. SSRN Working paper. (2009)
  25. 25.
    Magni, C.A.: Average internal rate of return and investment decisions: a new perspective. Eng. Econ. 55(2), 150–180 (2010a)CrossRefGoogle Scholar
  26. 26.
    Magni C.A.: Depreciation classes, return on investment and economic profitability. SSRN Working paper. (2010b)
  27. 27.
    Magni, C.A.: Aggregate return on investment and investment decisions: a cash-flow perspective. Eng. Econ. 56(2), 181–182 (2011)CrossRefGoogle Scholar
  28. 28.
    Magni, C.A.: The internal-rate-of-return approach and the AIRR paradigm: a refutation and a corroboration. Eng. Econ. 58(2), 73–111 (2013)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Magni, C.A.: Investment, financing and the role of ROA and WACC in value creation. Eur. J. Oper. Res. 244(3), 855–866 (2015)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Magni, C.A.: Capital depreciation and the underdetermination of rate of return: a unifying perspective. J. Math. Econ. 67, 54–79 (2016)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Mørch, O., Fagerholta, K., Pantuso, G., Rakkec, J.: Maximizing the rate of return on the capital employed in shipping capacity renewal. Omega 67, 42–53 (2017)CrossRefGoogle Scholar
  32. 32.
    Park, C.: Fundamentals of Engineering Economics. International Edition. Pearson, Harlow (2013)Google Scholar
  33. 33.
    Pasqual, J., Padilla, E., Jadotte, E.: Technical note: equivalence of different profitability criteria with the net present value. Int. J. Prod. Econ. 142(1), 205–210 (2013)CrossRefGoogle Scholar
  34. 34.
    Peasnell, K.V.: Some formal connections between economic values and yields and accounting numbers. J. Bus. Finance Account. 9(3), 361–381 (1982)CrossRefGoogle Scholar
  35. 35.
    Rao, R.: Financial Management. MacMillan Publishing Company, Basingstoke (1992)Google Scholar
  36. 36.
    Remer, D.S., Nieto, A.P.: A compendium and comparison of 25 project evaluation techniques. Part 1: net present value and rate of return methods. Int. J. Prod. Econ. 42(1), 79–96 (1995a)CrossRefGoogle Scholar
  37. 37.
    Remer, D.S., Nieto, A.P.: A compendium and comparison of 25 project evaluation techniques. Part 2: ratio, payback, and accounting methods. Int. J. Prod. Econ. 42(2), 101–129 (1995b)CrossRefGoogle Scholar
  38. 38.
    Remer, D.S., Stokdyk, S.B., Van Driel, M.: Survey of project evaluation techniques currently used in industry. Int. J. Prod. Econ. 32(1), 103–115 (1993)CrossRefGoogle Scholar
  39. 39.
    Robichek, A.A., Myers, S.C.: Optimal Financing Decisions. Prentice-Hall, Englewood Cliffs (1965)Google Scholar
  40. 40.
    Ross, S.A., Westerfield, R.W., Jordan, B.D.: Essentials of Corporate Finance, 7th edn. McGraw-Hill Irwin, New York (2011)Google Scholar
  41. 41.
    Sandahl, G., Sjögren, S.: Capital budgeting methods among Swedens largest groups of companies. The state of the art and a comparison with earlier studies. Int. J. Prod. Econ. 84(1), 51–69 (2003)CrossRefGoogle Scholar
  42. 42.
    Spaulding, D.: The Handbook of Investment Performance: A User’s Guide, 2nd edn. TSG Publishing Inc, Somerset (2011)Google Scholar
  43. 43.
    Wiesemann, D., Kuhn, D., Rustem, B.: Maximizing the net present value of a project under uncertainty. Eur. J. Oper. Res. 202(2), 356–367 (2010)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Carlo Alberto Magni
    • 1
  • Piero Veronese
    • 2
  • Rebecca Graziani
    • 3
  1. 1.Department of Economics “Marco Biagi”, CEFINUniversity of Modena and Reggio EmiliaModenaItaly
  2. 2.Department of Decision SciencesBocconi UniversityMilanItaly
  3. 3.Department of Policy Analysis and Public ManagementBocconi UniversityMilanItaly

Personalised recommendations