Skip to main content
Log in

Optimal investment with transaction costs under cumulative prospect theory in discrete time

  • Published:
Mathematics and Financial Economics Aims and scope Submit manuscript

Abstract

We study optimal investment problems under the framework of cumulative prospect theory (CPT). A CPT investor makes investment decisions in a single-period financial market with transaction costs. The objective is to seek the optimal investment strategy that maximizes the prospect value of the investor’s final wealth. We obtain the optimal investment strategy explicitly in two examples. An economic analysis is conducted to investigate the impact of the transaction costs and risk aversion on the optimal investment strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Daniel Kahneman was awarded the 2002 Nobel Memorial Prize in Economic Sciences for his pioneering work on the psychology of decision-making and behavioral economics (notably, prospect theory and cumulative prospect theory).

  2. In this case, the replication strategy involves long the risky asset. \(\theta _\xi \) and \(x_\xi \) are solved from \( (1+r) \cdot (x_\xi - \theta _\xi ) + (1-\lambda )u \cdot \theta _\xi = \xi _u \text { and } (1+r) \cdot (x_\xi - \theta _\xi ) + (1-\lambda )d \cdot \theta _\xi = \xi _d. \)

  3. In this case, the replication strategy involves short the risky asset. \(\theta _\xi \) and \(x_\xi \) are solved from \( (1+r) \cdot (x_\xi - (1-\lambda )\theta _\xi ) + u \cdot \theta _\xi = \xi _u \text { and } (1+r) \cdot (x_\xi - (1-\lambda )\theta _\xi ) + d \cdot \theta _\xi = \xi _d. \)

  4. The results explain the superscript notations in \(\varXi ^b\) and \(\varXi ^s\) (“b” stands for “buy” and “s” stands for “sell”).

  5. Data source: Thomson Reuters Eikon. Access from the Chair of Mathematical Finance at the Technical University of Munich is greatly appreciated.

  6. Data source: Yahoo Finance https://uk.finance.yahoo.com/q/hp?s=%5EFTSE.

  7. The increasing property of \(\theta _1\) with respect to \(\beta \) is not that noticeable in Fig. 4, but is clearly supported by numerical values.

References

  1. Barberis, N., Huang, M.: Stocks as lotteries: the implications of probability weighting for security prices. Am. Econ. Rev. 98(5), 2066–2100 (2008)

    Article  Google Scholar 

  2. Bernard, C., Ghossoub, M.: Static portfolio choice under cumulative prospect theory. Math. Financ. Econ. 2(4), 277–306 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berkelaar, A.B., Kouwenberg, R., Post, T.: Optimal portfolio choice under loss aversion. Rev. Econ. Stat. 86(4), 973–987 (2004)

    Article  Google Scholar 

  4. Bernoulli, D.: Exposition of a new theory on the measurement of risk (translated by Louise Summer). Econometrica 22, 23–36 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  5. Carassus, L., Rásonyi, M.: On optimal investment for a behavioral investor in multiperiod incomplete market models. Math. Financ. 25(1), 115–153 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Carassus, L., Rásonyi, M.: Maximization of nonconcave utility functions in discrete-time financial market models. Math. Oper. Res. 41(1), 146–173 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Carassus, L., Rásonyi, M., Rodrigues, A.M.: Non-concave utility maximisation on the positive real axis in discrete time. Math. Financ. Econ. 9(4), 325–349 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Carlier, G., Dana, R.: Optimal demand for contingent claims when agents have law invariant utilities. Math. Financ. 21(2), 169–201 (2011)

    MathSciNet  MATH  Google Scholar 

  9. Davis, M., Norman, A.: Portfolio selection with transaction costs. Math. Oper. Res. 15(4), 676–713 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  10. He, X.D., Zhou, X.Y.: Portfolio choice under cumulative prospect theory: an analytical treatment. Manag. Sci. 57(2), 315–331 (2011)

    Article  MATH  Google Scholar 

  11. He, X.D., Zhou, X.Y.: Portfolio choice via quantiles. Math. Financ. 21(2), 203–231 (2011)

    MathSciNet  MATH  Google Scholar 

  12. He, X.D., Zhou, X.Y.: Myopic loss aversion, reference point, and money illusion. Quant. Financ. 14(9), 1541–1554 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jin, H.Q., Zhou, X.Y.: Behavioral portfolio selection in continuous time. Math. Financ. 18(3), 385–426 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jin, H.Q., Zhou, X.Y.: Greed, leverage, and potential losses: a prospect theory perspective. Math. Financ. 23(1), 122–142 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kabanov, Y., Safarian, M.: Markets with Transaction Costs. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  16. Kahneman, D., Tversky, A.: Prospect theory: an analysis of decision under risk. Econometrica 47(2), 263–291 (1979)

    Article  MATH  Google Scholar 

  17. Keating, C., Shadwick, W.: A universal performance measure. J. Perform. Meas. 6(3), 59–64 (2002)

    Google Scholar 

  18. Köbberling, V., Wakker, P.: An index of loss aversion. J. Econ. Theory 122, 119–131 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Magill, M., Constantinides, G.: Portfolio selection with transaction costs. J. Econ. Theory 13, 245–263 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  20. Merton, R.: Lifetime portfolio selection under uncertainly: the continuous-time case. Rev. Econ. Stat. 51(3), 247–257 (1969)

    Article  Google Scholar 

  21. Pirvu, T., Schulze, K.: Multi-stock portfolio optimization under prospect theory. Math. Financ. Econ. 6(4), 337–362 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Prelec, D.: The probability weighting function. Econometrica 66(3), 497–527 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Quiggin, J.: A theory of anticipated utility. J. Econ. Behav. Organ. 3(4), 323–343 (1982)

    Article  Google Scholar 

  24. Rásonyi, M.: Optimal investment with nonconcave utilities in discrete-time markets. SIAM J. Financ. Math. 6(1), 517–529 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Rásonyi, M., Rodrigues, A.M.: Optimal portfolio choice for a behavioural investor in continuous-time markets. Ann. Financ. 9(2), 291–318 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Rásonyi, M., Rodrigues, A.M.: Continuous-time portfolio optimisation for a behavioural investor with bounded utility on gains. Electron. Commun. Probab. 19, 1–13 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Rieger, M., Bui, T.: Too risk-averse for prospect theory? Mod. Econ. 2(4), 691–700 (2011)

    Article  Google Scholar 

  28. Rieger, M., Wang, M.: Cumulative prospect theory and the St. Petersburg paradox. Econ. Theory 28(3), 665–679 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Samuelson, P.: Lifetime portfolio selection by dynamic stochastic programming. Rev. Econ. Stat. 51(3), 239–246 (1969)

    Article  Google Scholar 

  30. Shreve, S., Soner, M.: Optimal investment and consumption with transaction costs. Ann. Appl. Probab. 4(3), 609–692 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  31. Tversky, A., Kahneman, D.: The framing of decisions and the psychology of choice. Nat. New Ser. 211(4481), 453–458 (1981)

    MathSciNet  MATH  Google Scholar 

  32. Tversky, A., Kahneman, D.: Advances in prospect theory: cumulative representation of uncertainty. J. Risk Uncertain. 5(4), 297–323 (1992)

    Article  MATH  Google Scholar 

  33. Von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior. Princeton University Press, Princeton (1944)

    MATH  Google Scholar 

  34. Zou, B.: Optimal investment in hedge funds under loss aversion. Forthcoming in Int. J. Theor. Appl. Financ. doi:10.1142/S0219024917500145 (2017)

Download references

Acknowledgements

The first author BZ acknowledges the financial support from the Technical University of Munich (TUM) through the TUM foundation fellowship. This work was done when BZ was a postdoctoral fellow at the Chair of Mathematical Finance of TUM. We are thankful to two anonymous referees for valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudi Zagst.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, B., Zagst, R. Optimal investment with transaction costs under cumulative prospect theory in discrete time. Math Finan Econ 11, 393–421 (2017). https://doi.org/10.1007/s11579-017-0186-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11579-017-0186-z

Keywords

JEL Classification

Navigation