Mathematics and Financial Economics

, Volume 10, Issue 1, pp 1–14 | Cite as

Optimal portfolio liquidation with additional information

  • Stefan Ankirchner
  • Christophette Blanchet-Scalliet
  • Anne Eyraud-Loisel
Article

Abstract

We consider the problem of how to optimally close a large asset position in a market with a linear temporary price impact. We take the perspective of an agent who obtains a signal about the future price evolvement. By means of classical stochastic control we derive explicit formulas for the closing strategy that minimizes the expected execution costs. We compare agents observing the signal with agents who do not see it. We compute explicitly the expected additional gain due to the signal, and perform a comparative statics analysis.

Keywords

Optimal liquidation Price impact Additional information   Enlargement of filtration HJB equation 

References

  1. 1.
    Almgren, R., Chriss, N.: Optimal execution of portfolio transactions. J. Risk 3, 5–39 (2000)Google Scholar
  2. 2.
    Amendinger, J., Becherer, D., Schweizer, M.: A monetary value for initial information in portfolio optimization. Finance Stoch. 7(1), 29–46 (2003)MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Amendinger, J., Imkeller, P., Schweizer, M.: Additional logarithmic utility of an insider. Stoch. Process. Appl. 75(2), 263–286 (1998)MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Ankirchner, S., Dereich, S., Imkeller, P.: The Shannon information of filtrations and the additional logarithmic utility of insiders. Ann. Probab. 34(2), 743–778 (2006)MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Ankirchner, S., Imkeller, P.: Financial markets with asymmetric information: information drift, additional utility and entropy. In Stochastic processes and applications to mathematical finance, pp. 1–21. World Sci. Publ., Hackensack (2007)Google Scholar
  6. 6.
    Baudoin, F.: Modeling Anticipations on Financial Markets. In Paris-Princeton Lectures on Mathematical Finance, 2002, Volume 1814 of Lecture Notes in Math, pp. 43–94. Springer, Berlin (2003)Google Scholar
  7. 7.
    Bertsimas, D., Lo, A.W.: Optimal control of execution costs. J. Financ. Markets 1, 1–50 (1998)CrossRefGoogle Scholar
  8. 8.
    Corcuera, J.M., Imkeller, P., Kohatsu-Higa, A., Nualart, D.: Additional utility of insiders with imperfect dynamical information. Fin. Stoch. 8, 437–450 (2004)MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Eyraud-Loisel, A.: Backward stochastic differential equations with enlarged filtration. Option hedging of an insider trader in a financial market with jumps. Stoch. Process. Their Appl. 115(11), 1745–1763 (2005)MATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Grorud, A., Pontier, M.: Insider trading in a continuous time market model. Int. J. Theor. Appl. Fin. 1(3), 331–347 (1998)MATHCrossRefGoogle Scholar
  11. 11.
    Hillairet, C.: Comparison of insiders’ optimal strategies depending on the type of side-information. Stoch. Process. Appl. 115(10), 1603–1627 (2005)MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Ihara, S.: Information Theory for Continuous Systems. World Scientific Publishing Co., Inc., River Edge, NJ (1993)MATHCrossRefGoogle Scholar
  13. 13.
    Karatzas, I., Pikovsky, I.: Anticipative portfolio optimization. Adv. Appl. Probab. 28(4), 1095–1122 (1996)MATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Mansuy, R., Yor, M.: Random Times and Enlargements of Filtrations in a Brownian Setting, Volume 1873 of Lecture Notes in Mathematics. Springer-Verlag, Berlin (2006)Google Scholar
  15. 15.
    Schied, A.: A control problem with fuel constraint and Dawson-Watanabe superprocesses. Ann. Appl. Probab. 23(6), 2472–2499 (2013)MATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Schied, A., Schöneborn, T., Tehranchi, M.: Optimal basket liquidation for CARA investors is deterministic. Appl. Math. Finance 17(6), 471–489 (2010)MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Stefan Ankirchner
    • 1
  • Christophette Blanchet-Scalliet
    • 2
  • Anne Eyraud-Loisel
    • 3
  1. 1.Institut für MathematikFriedrich-Schiller-Universität JenaJenaGermany
  2. 2.Institut Camille Jordan - Ecole Centrale de LyonUniversité de Lyon - CNRS, UMR 5208Ecully CedexFrance
  3. 3.Laboratoire SAFUniversité de Lyon - Université Lyon 1 - ISFALyonFrance

Personalised recommendations