Skip to main content
Log in

Modeling and estimating commodity prices: copper prices

  • Published:
Mathematics and Financial Economics Aims and scope Submit manuscript

Abstract

A new methodology is laid out for the modeling of commodity prices, it departs from the ‘standard’ approach in that it makes a definite distinction between the analysis of the short term and long term regimes. In particular, this allows us to come up with an explicit drift term for the short-term process whereas the long-term process is primarily driftless due to inherent high volatility of commodity prices excluding an almost negligible mean reversion term. Not unexpectedly, the information used to build the short-term process relies on more than just historical prices but takes into account additional information about the state of the market. This work is done in the context of copper prices but a similar approach should be applicable to wide variety of commodities although certainly not all since commodities come with very distinct characteristics. In addition, our model also takes into account inflation which leads us to consider a multi-dimensional system for which one can generate explicit solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. The inclusion or not of a mean reversion term in the long-term process will be taken up in the section devoted to the long-term process.

  2. How futures’ prices are determined is not of immediate concern including the role played by any of the factors mentioned above; one could consult [5, 8] for an analysis of how they might depend on stock levels and spot prices associated with contracts involving actual deliveries.

  3. In the Pilipovic model, prices are modeled by a system of two stochastic differential equations: the first one for the spot price, which is assumed to mean-revert toward the equilibrium price level, and the second for the equilibrium price level, which is supposed to follow a log-gaussian distribution,

    $$\begin{aligned} dS_t&= \alpha \left( L_t - S_t\right) dt + \sigma S_t dw_t\\ dL_t&=\mu L_t dt + L_t yi dz_t \end{aligned}$$
  4. We also implemented the Phillips–Perron test but the results obtained were the same as for the ADF test.

References

  1. Andersson, H.: Are commodity prices mean reverting? Appl. Financ. Econ. 17(10), 769–783 (2007)

    Article  Google Scholar 

  2. Barlow, M.T.: A diffusion model for electricity prices. Math. Financ. 12(4), 287–298 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bessembinder, H., Coughenour, J.F., Seguin, P.J., Smoller, M.: Mean reversion in equilibrium asset prices: evidence from the futures term structure. J. Financ. 50(1), 361–375 (1995)

    Article  Google Scholar 

  4. Chen, Y.-C., Rogoff, K., Rossi, B.: Can exchange rates forecast commodity prices? Q. J. Econ. 125(3), 1145–1194 (2010)

    Article  MATH  Google Scholar 

  5. Cretì, A., Villeneuve, B.: Commodity storage with durable shocks: a simple markovian model. U. Paris-Dauphine, Technical report, CEREMADE (2013)

  6. Dixit, A.K.: The Art of Smooth Pasting. London School of Economics and Political Science, London (1992)

    Google Scholar 

  7. Dixit, A.K., Robert, S.: Investment Under Uncertainty. Princeton University Press, Pindyck (1994)

    Google Scholar 

  8. Ekeland, I., Lautier, D., Villeneuve, B.: A simple equilibrium model for a commodity market with spo trades and future contracts. U. Paris-Dauphine, Technical report, CEREMADE (2013)

  9. Engel, E., Valdes, R.: Prediciendo el precio del cobre: Mas alla del camino aleatorio? Universidad de Chile (2001)

  10. Gibson, R., Schwartz, E.S.: Stochastic convenience yield and the pricing of oil contingent claims. J. Financ. 45(3), 959–976 (1990)

    Article  Google Scholar 

  11. Hilliard, J.E., Reis, J.A.: Valuation of commodity futures and options under stochastic convenience yields, interest rates and jump diffusions in the spot. J. Financ. Quant. Anal. 33(1), 61–86 (1998)

    Article  Google Scholar 

  12. Hull, J.: Options, Futures, and Other Derivatives, 7th edn. Prentice Hall, Boston (2008)

    Google Scholar 

  13. Miltersen, K.R., Schwartz, E.S.: Pricing of options on commodity futures with stochastic term structures of convenience yields and interest rates. J. Financ. Quant. Anal. 33(1), 33–59 (1998)

    Article  Google Scholar 

  14. Nielsen, M.J., Schwartz, E.S.: Theory of storage and the pricing of commodity claims. Rev. Deriv. Res. 7, 5–24 (2004)

    Article  MATH  Google Scholar 

  15. Pilipovic, D.: Energy Risk: Valuing and Managing Energy Derivatives. McGraw-Hill, New York (2007)

    Google Scholar 

  16. Ribeiro, D.: Models for the price of a storable commodity. Ph.D. thesis, University of Warwick (2004)

  17. Royset, J., Wets, R.J.-B.: Epi-splines and exponential epi-splines: Pliable approximation tools. Math. Programm. (submitted) (2014)

  18. Schwartz, E.S.: The stochastic behavior of commodity prices: Implications for valuation and hedging. J. Financ. 52(3), 923–973 (1997)

    Article  Google Scholar 

  19. Schwartz, E.S.: Valuing long-term commodity assets. Financ. Manag. 27(1), 57–66 (1998)

    Article  Google Scholar 

  20. Schwartz, E.S., Smith, J.E.: Short term variations and long term dynamics in commodity prices. Manag. Sci. 46(7), 893–911 (2000)

    Article  Google Scholar 

  21. Uhlenbeck, George E., Ornstein, Leonard: On the theory of brownian motion. Phys. Rev. 36, 823–841 (1930)

    Article  MATH  Google Scholar 

  22. Ulloa, A.: Tendencia y volatilidad del precio del cobre. In: Meller, P. (ed.) Dilemas y debates en torno al cobre, Chapter 7. Dolmen, Santiago (2002)

    Google Scholar 

  23. Wets, R.J.-B., Bianchi, S.W., Yang, L.: Serious Zero Curves. EpiRisk Research LLC, El Cerrito (2002)

    Google Scholar 

  24. Wets, R.J.-B., Bianchi, S.W.: Term and volatility structure, handbook of assets and liability management. In: Zenios, S.A., Ziemba, W. (eds.) Handbook of Aset and Liability Management, pp. 26–68. Elsevier, Amsterdam (2006)

    Google Scholar 

  25. Williams, J.C., Wright, B.D.: Storage and Commodity Markets. Cambridge University Press, Cambridge (1991)

    Book  Google Scholar 

Download references

Acknowledgments

This project was started while the first author was visiting the Centro de Modelamiento Matematico and Systemas Complejos de Ingeneria, Universidad de Chile. His research was supported in part by the U. S. Army Research Laboratory and the U. S. Army Research Office under Grant number W911NF-10-1-0246. The research of the second author was financed by Complex Engineering Systems Institute (ICM:P-05-004-F, CONICYT: FBO16) and Fondecyt Project 1120318.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger J.-B. Wets.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (xlsx 658 KB)

Appendix

Appendix

1.1 Appendix 1: Approximate solution of the long-term process

The solution of the long-term process is given by,

$$\begin{aligned} x_i^t=x_i^0 \exp \left[ -\left( \mu _i+\frac{1}{2}\sum _{j=1}^J b_{ij}^2\right) (t-t_0)+\sum _{j=1}^J b_{ij} \left( w_j^t-w_j^{t_0} \right) \right] +\mu _i \upsilon _i \int _0^te^{r_i(t,s)ds} \end{aligned}$$

where \(r_i(t,s)=-\left[ \mu _i+\frac{1}{2}\sum _{j=1}^J b_{ij}^2\right] (t-s)+\sum _{j=1}^J b_ij \left( w_j^t-w_j^{s}\right) \). We are going to approximate this solution replacing the term \(\mu _i \upsilon _i \int _0^t e^{r_i(t,s)ds}\) by its expectation. Then,

$$\begin{aligned} \mathbb {E}\left( \mu _i \upsilon _i \int _0^t e^{r_i(t,s)ds}\right)&= \mu _i \upsilon _i \int _0^t e^{-\left( \mu _i{+}\frac{1}{2} \sum _{j=1}^J b_{ij}^2\right) (t{-}s)}\, \mathbb {E}\left( \exp \left[ \sum _{j{=}1}^J b_{ij} \left( w_j^t{-}w_j^{s}\right) \right] \right) ds\\&=\mu _i \upsilon _i \int _0^t e^{-\left( \mu _i+\frac{1}{2} \sum _{j=1}^J b_{ij}^2\right) (t-s)}\,\mathbb {E}\left( \prod _{j=1}^J \exp \left[ b_{ij} \left( w_j^t-w_j^{s}\right) \right] \right) ds\\&=\mu _i \upsilon _i \int _0^t e^{-\left( \mu _i+\frac{1}{2} \sum _{j=1}^J b_{ij}^2\right) (t-s)} \prod _{j=1}^J \mathbb {E} \left( \exp \left[ b_{ij} \left( w_j^t-w_j^{s}\right) \right] \right) ds \end{aligned}$$

But noting that \(\left( w_j^t-w_j^{s}\right) \) is a gaussian process with mean 0 and variance \((t-s)\) we know that,

$$\begin{aligned}&=\mu _i \upsilon _i \int _0^t e^{-\left( \mu _i+\frac{1}{2} \sum _{j=1}^J b_{ij}^2\right) (t-s)} \prod _{j=1}^J \exp \left[ \frac{1}{2} b_{ij}^2 (t-s)\right] ds\\&=\mu _i \upsilon _i \int _0^t e^{-\left( \mu _i+\frac{1}{2} \sum _{j=1}^J b_{ij}^2\right) (t-s)}\exp \left[ \frac{1}{2}\sum _{j=1}^J b_{ij}^2 (t-s)\right] ds\\&=\mu _i \upsilon _i \int _0^t e^{-\left( \mu _i\right) (t-s)}ds\\&=\mu _i \upsilon _i e^{-\mu _i t}\int _0^t e^{\mu _i s}ds\\&=\upsilon _i e^{-\mu _i t}\left( e^{\mu _i t}-1\right) \\&= \upsilon _i \left( 1-e^{-\mu _i t}\right) \end{aligned}$$

Finally, we can approximate the solution of the long-term process to,

$$\begin{aligned} x_i^t=\upsilon _i \left( 1-e^{-\mu _i t}\right) +x_i^0 \exp \left[ - \left( \mu _i+\frac{1}{2}\sum _{j=1}^J b_{ij}^2\right) (t-t_0)+\sum _{j=1}^J b_{ij} \left( w_j^t-w_j^{t_0}\right) \right] \end{aligned}$$

1.2 Appendix 2: Parameter estimation of the short-term process

The SDE that governs the short term process can be written as,

$$\begin{aligned} dS_i^t=\left( \mu _i -\frac{1}{2} \sum _{j=1}^{J}b_{ij}^2\right) dt+\sum _{j=1}^{J}b_{ij}dw_j^t \end{aligned}$$

where \(S_i^t=\ln x_i^t\). Then, we know that the \(dS_i^t\) follows a gaussian distribution with the following properties (see Dixit [6] and Hull [12]):

$$\begin{aligned} \mathbb {E}\left[ dS_{i}^t\right]&=\left( \mu _i -\frac{1}{2} \sum _{j=1}^{J}b_{ij}^2\right) dt\\ \mathbb {V}\left[ dS_{i}^t\right]&=\sum _{j=1}^{J}b_{ij}^2 dt\\ cov\left[ dS_{i}^t,dS_{k}^t\right]&=\sum _{j=1}^{J}b_{ij}b_{kj}dt \end{aligned}$$

Considering the discrete case we have,

$$\begin{aligned} \mathbb {E}\left[ S_{i}^{t+\Delta t}-S_{i}^t\right]&=\left( \mu _i - \frac{1}{2} \sum _{j=1}^{J}b_{ij}^2\right) \Delta t\\ \mathbb {V}\left[ S_{i}^{t+\Delta t}-S_{i}^t\right]&=\sum _{j=1}^{J} b_{ij}^2 \Delta t\\ cov\left[ S_{i}^{t+\Delta t}-S_{i}^t,S_{k}^{t+\Delta t}- S_{k}^t\right]&=\sum _{j=1}^{J}b_{ij}b_{kj}\Delta t \end{aligned}$$

Then, the easiest method to estimate the parameters of this model is using the fact that \(S_i^t=\ln x_i^t\) and historical prices in such a way that,

$$\begin{aligned} \mu _i&=\mathbb {E}\left[ \frac{1}{\Delta t}\ln \left( \frac{x_i^{t +\Delta t}}{x_i^t}\right) \right] +\frac{1}{2} \sum _{j=1}^{J}b_{ij}^2\\ \sum _{j=1}^{J}b_{ij}^2&=\mathbb {V}\left[ \frac{1}{\sqrt{\Delta t}}\ln \left( \frac{x_i^{t+\Delta t}}{x_i^t}\right) \right] \\ \sum _{j=1}^{J}b_{ij}b_{kj}&=cov\left[ \frac{1}{\sqrt{\Delta t}} \ln \left( \frac{x_i^{t+\Delta t}}{x_i^t}\right) ,\frac{1}{ \sqrt{\Delta t}}\ln \left( \frac{x_k^{t+\Delta t}}{x_k^t}\right) \right] \end{aligned}$$

Another way to estimate these parameters is recalling that, for \(i\in \{p,r\}\)

$$\begin{aligned} \mathbb {E}[x_{i}^t]=x_{i}^{0}e^{\mu _{i} t}, \end{aligned}$$

where \(\mu _i\) is the drift and \(x_i^0\) the initial value of index \(i\).

Then, we estimate \(\mu _i, \; i \in \{p,r\}\) and the initial state denoted by \(\theta _i, \; i \in \{p,r\}\). Estimating the initial state is very important because in most applications is used the actual spot price as initial condition, forgetting that this also has noise as it is a random variable.

Finally, assuming that the errors in the observations (\(x_i^t\)) come from white noise around the drift term \(\mu _i t\), one has

$$\begin{aligned} x_i^t=\theta _i e^{\mu _i t+\varepsilon _i^t}, \quad t\in T \end{aligned}$$

The main idea of this approach is to minimize the error associated to the estimation. For doing so, we are going to minimize \(\sum _{t\in T} |\varepsilon _i^t|^2\), i.e.,

$$\begin{aligned} \left( \hat{\theta }_i, \hat{\mu }_i\right) \in {\mathrm{argmin }} \left( \theta _i, \mu _i\right) \sum _t\left| \mu _i t-\ln \left( \frac{x_i^t}{\theta _i}\right) \right| ^2 \end{aligned}$$

Differentiating with respect to \(\theta _i\) and \(\mu _i\) we get,

$$\begin{aligned} \frac{d\upsilon _i}{d\theta _i}&=2\sum _t\left( \ln \left( \frac{x_i^{t}}{\theta _i}\right) -\mu _i t\right) \frac{1}{\theta _i}\\ \frac{d\upsilon _i}{d\mu _i}&=2\sum _t\left( \ln \left( \frac{x_i^{t}}{\theta _i}\right) -\mu _i t\right) t\\ \end{aligned}$$

Setting these derivatives equal to 0 we obtain,

$$\begin{aligned} \frac{d\upsilon _i}{d\theta _i}=0 \Rightarrow \mu _i = \frac{\sum _{t\in T} \ln \left( \frac{x_i^{t}}{\theta _i}\right) t}{\sum _{t\in T} t^2}, \qquad \frac{d\upsilon _i}{d\theta _i}=0 \Rightarrow \mu _i = \frac{\sum _{t\in T} \ln \left( \frac{x_i^{t}}{\theta _i}\right) }{\sum _{t\in T} t}. \end{aligned}$$

Solving the system and denoting \(a=\sum _{t\in T} t\) and \(b=\sum _{t\in T} t^2\) we obtain, for \(i\in \{p,r\}\)

$$\begin{aligned} \hat{\theta }_i&=\exp \left( \left( a^2-b\eta \right) ^{-1}\sum _t (at-b)\ln (x_i^{t})\right) \\ \hat{\mu }_i&=b^{-1}\left( \sum _{t\in T} t\ln \left( \frac{x_i^{t}}{\hat{\theta }_i}\right) \right) \\ \end{aligned}$$

where \(\eta \) is the number of observation, i.e., if we consider just the historical information of the last 12 months \(\eta =13\).

Covariance matrix To estimate the covariance matrix with this method we know that,

$$\begin{aligned} cov\left\{ x_i^t, x_j^t\right\} =x_i^0 x_j^0 e^{(\mu _i+ \mu _j)t}\left[ \exp \left( t\sum _{k=1}^{J}b_{ik} b_{jk}\right) -1\right] \end{aligned}$$

Assuming that observations are corrupted by a white noise \(\varepsilon _{kl}^t\) that affects \(|t|\sum _{j\in \{p,r\}}b_{kj}b_{lj}\) and recalling that \(\hat{x}_k^t=\hat{\theta }_k e^{\hat{\mu }_k|t|}\), i.e., for \(t=-12,\ldots ,0\),

$$\begin{aligned} \left( x_k^{t}-\hat{x}_k^{t}\right) \left( x_l^{t}-\hat{x}_l^{t} \right) =\hat{\theta }_k\hat{\theta }_l e^{(\mu _k+ \mu _l)t} \left[ \exp \left( |t|\sum _{j\in \{p,r\}}b_{kj}b_{lj}+ \varepsilon _{kl}^t\right) \right] \end{aligned}$$

Then, seeking estimates that minimize \(\sum _t |\varepsilon _{kl}^t|^2\), one obtains the estimate \(\hat{\beta }_{kl}\) for \(\sum _{j\in \{p,r\}}b_{kj}b_{lj}\):

$$\begin{aligned} \hat{\beta }_{kl}=\frac{\sum _t |t| \ln \left[ 1+\frac{\left( x_k^{t}- \hat{x}_k^{t}\right) \left( x_l^{t}-\hat{x}_l^{t}\right) }{\hat{x}_k^{t} \hat{x}_l^{t}}\right] }{\sum _t t^2} \end{aligned}$$

Thus, the estimate for \(cov\left( x_p^{t}, x_r^{t}\right) \) is,

$$\begin{aligned} \hat{\sigma }_{pr}^{t}=\hat{\theta }_p\hat{\theta }_r e^{(\mu _p+ \mu _r)|t|} \left( e^{\hat{\beta }_{pr}|t|}-1\right) \end{aligned}$$

and the variance, for \(k\in \{p,r\}\),

$$\begin{aligned} \hat{\sigma }_{kk}^{t}=\hat{\theta }_k^2\left( e^{\hat{\beta }_{kk}|t|}-1\right) \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wets, R.JB., Rios, I. Modeling and estimating commodity prices: copper prices. Math Finan Econ 9, 247–270 (2015). https://doi.org/10.1007/s11579-014-0140-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11579-014-0140-2

Keywords

JEL Classification

Navigation