Multilevel Structural Equation Modeling for Cross-National Comparative Research

  • Bart MeulemanEmail author


This contribution focuses on a model that is gaining currency in cross-national research, namely multilevel structural equation modelling (MSEM). Similarly to standard multilevel modelling (MLM), this model distinguishes between various levels of analysis (e. g., individuals nested within countries) and, in doing so, takes the hierarchical structure of cross-national data into account. However, MSEM incorporates a latent-variable approach into the multilevel framework, making it possible to assess the measurement quality of latent constructs. As such, MSEM is a synthesis of structural equation modeling (SEM) and MLM that combines the best of both worlds. The MSEM approach makes it possible to model multilevel mediations and group-level outcomes, and therefore provides a more complete representation of Coleman’s bathtub model. This contribution presents the statistical and conceptual background of MSEM in a formal but accessible manner. The paper discusses applications of MSEM that are particularly useful for cross-national comparative research (CNCR), namely two-level confirmatory factor analysis (CFA), multilevel mediation models, and models for group-level outcomes. A practical step-by-step strategy on how MSEM can be used for applied research is provided and illustrated by means of a didactical example.


Multilevel confirmatory factor analysis Multilevel mediation Coleman’s bathtub Group-level outcomes Measurement isomorphism 

Mehrebenen-Strukturgleichungsmodelle für ländervergleichende Forschung


Dieser Beitrag konzentriert sich auf ein Modell, das in der ländervergleichenden Forschung immer mehr an Bedeutung gewinnt, nämlich die Mehrebenen-Strukturgleichungsmodellierung (MSEM, „multilevel structural equation modelling“). Ähnlich wie Standard-Mehrebenenmodelle (MLM, „multi-level models“) unterscheidet dieses Modell zwischen verschiedenen Analyseebenen (z. B. Personen in Ländern) und berücksichtigt die hierarchische Struktur der ländervergleichenden Daten. Bei MSEM werden jedoch latente Variablen in das Mehrebenenmodell integriert, um die Messqualität nicht direkt beobachteter Konstrukte beurteilen zu können. So ist MSEM eine Synthese aus Strukturgleichungsmodellen (SEM „structural equation models“) und MLM, die das Beste aus beiden Welten vereint. Der MSEM-Ansatz ermöglicht Mediationsanalysen in Mehrebenendaten und die Modellierung von Outcomes auf der Makroebene und kann daher sehr viel besser das Badewannenmodell von Coleman abbilden. In diesem Beitrag wird der statistische und konzeptionelle Hintergrund von MSEM auf formale, aber leicht zugängliche Weise dargestellt. Es werden Anwendungen von MSEM erörtert, die für ländervergleichende Forschung besonders nützlich sind, nämlich die konfirmatorische Mehrebenen-Faktorenanalyse, Mehrebenen-Mediationsmodelle und Modelle für Outcomes auf der Makroebene. Schritt für Schritt wird anhand eines didaktischen Beispiels erläutert und veranschaulicht, wie MSEM für angewandte Forschung eingesetzt werden kann.


Konfirmatorische Mehrebenen-Faktorenanalyse Mehrebenenmediation Colemans Badewanne Outcomes auf der Makroebene Isomorphismus der Messung 



I would like to thank the editors of the special issue for their useful comments on an earlier version of this paper. Furthermore, I am grateful to Sharon Baute, who assisted in setting up the empirical illustration and the replication materials.


  1. Andreß, Hans-Jürgen, Detlef Fetchenhauer and Heiner Meulemann. Eds. 2019. In Cross-national comparative research — analytical strategies, results, and explanations. Sonderheft Kölner Zeitschrift für Soziologie und Sozialpsychologie. Wiesbaden: Springer VS.
  2. Asparouhov, Tihomir, and Bengt Muthén. 2012. General random effect latent variable modeling: Random subjects, items, contexts, and parameters. Retrieved from Scholar
  3. Baute, Sharon, Bart Meuleman, Koen Abts and Marc Swyngedouw. 2018. European integration as a threat to social security: Another source of Euroscepticism? European Union Politics 19:209–232.CrossRefGoogle Scholar
  4. Becker, Dominik, Wiebke Breustedt and Christina Isabel Zuber. 2018. Surpassing simple aggregation: Advanced strategies for analyzing contextual-level outcomes in multilevel models. methods, data, analyses 12:233–264.Google Scholar
  5. Bennink, Margot, Marcel A. Croon and Jeroen K. Vermunt. 2013. Micro-macro multilevel analysis for discrete data: A latent variable approach and an application on personal network data. Sociological Methods & Research 42:431–457.CrossRefGoogle Scholar
  6. Billiet, Jaak, and Bart Meuleman. 2014. Some methodological challenges of quantitative cross-national social policy research. In Invisible social security revisited: essays in honour of Jos Berghman, ed. Wim van Oorschot W., Hans Peeters and Kees Boos, p. 289–303. Leuven: Lannoo Campus.Google Scholar
  7. Blalock, Herbert M. 1979. The presidential address: Measurement and conceptualization problems: The major obstacle to integrating theory and research. American Sociological Review 44:881–894.CrossRefGoogle Scholar
  8. Bollen, Kenneth. 1989. Structural equations with latent variables. New York: Wiley.CrossRefGoogle Scholar
  9. Byrne, Barbare M., and Fons J.R. van de Vijver. 2014. Factorial structure of the family values scale from a multilevel-multicultural perspective. International Journal of Testing 14:168–192.CrossRefGoogle Scholar
  10. Cheong, JeeWon, and David A. MacKinnon. 2012. Mediation/Indirect effects in structural equation modeling. In Handbook of Structural Equation Modeling, ed. Rick H. Hoyle. New York: The Guilford Press.Google Scholar
  11. Cieciuch, Jan, Eldad Davidov, Peter Schmidt and René Algesheimer. 2019. How to obtain comparable measures for cross-national comparisons. In Cross-national comparative research – analytical strategies, results and explanations. Sonderheft Kölner Zeitschrift für Soziologie und Sozialpsychologie. Eds. Hans-Jürgen Andreß, Detlef Fetchenhauer and Heiner Meulemann. Wiesbaden: Springer VS.
  12. Coleman, James 1990. Foundations of Social Theory. Cambridge: Harvard University PressGoogle Scholar
  13. Croon, Marcel A., and Marc J. van Veldhoven. 2007. Predicting group-level outcome variables from variables measured at the individual level: A latent variable multilevel model. Psychological Methods 12:45–57.CrossRefGoogle Scholar
  14. Davidov, Eldad, Hermann Dülmer, Elmar Schlüter, Peter Schmidt and Bart Meuleman. 2012. Using a multilevel structural equation modeling approach to explain cross-cultural measurement noninvariance. Journal of Cross-Cultural Psychology 43:558–575.CrossRefGoogle Scholar
  15. Davidov, Eldad, Bart Meuleman, Jan Cieciuch, Peter Schmidt and Jaak Billiet. 2014. Measurement equivalence in cross-national research. Annual Review of Sociology 40:55–75.CrossRefGoogle Scholar
  16. Davidov, Eldad, Peter Schmidt, Jaak Billiet and Bart Meuleman. 2018. Cross-cultural Analysis: Methods and applications. New York: Routledge.CrossRefGoogle Scholar
  17. Demarest, Leila, Arnim Langer and Bart Meuleman (forthcoming). Between fallacy and feasibility? Theory and empirics in quantitative social disorder studies.Google Scholar
  18. Dyer, Naomi G., Paul J. Hanges and Rosalie J. Hall. 2005. Applying multilevel confirmatory factor analysis techniques to the study of leadership. The leadership quarterly 16:149–167.CrossRefGoogle Scholar
  19. Fischer, Ronald. 2012. Value isomorphism in the European Social Survey: Exploration of meaning shifts in values across levels. Journal of Cross-Cultural Psychology 43:883–898.CrossRefGoogle Scholar
  20. Fischer, Ronald, C‑Mélanie Vauclair, Johnny R. Fontaine and Shalom H. Schwartz. 2010. Are individual-level and country-level value structures different? Testing Hofstede’s legacy with the Schwartz Value Survey. Journal of cross-cultural psychology 41:135–151.CrossRefGoogle Scholar
  21. Fontaine, Johnny. 2008. Traditional and multilevel approaches in cross-cultural research: An integration of methodological frameworks. Multilevel analysis of individuals and cultures, 65–92.Google Scholar
  22. Fontaine, Johnny, and Ronald Fischer. 2010. Data analytic approaches for investigating isomorphism between the individual-level and the cultural-level internal structure. In Cross-cultural research methods in psychology. pp. 273–298. Cambridge University Press.CrossRefGoogle Scholar
  23. Harkness, Janet A., Michael Braun, M., Brad Edwards, Timothy P. Johnson, Lars Lyberg, Peter Ph. Mohler, Beth-Ellen Pennell and Tom W. Smith. 2010. Survey methods in multinational, multiregional, and multicultural contexts. Hoboken NJ: John Wiley & Sons.CrossRefGoogle Scholar
  24. Harkness Janet A., Fons J.R. van de Vijver and Peter Ph. Mohler. 2003. Cross-Cultural Survey Methods. New York: John Wiley.Google Scholar
  25. Hedström, Peter, and Richard Swedberg. 1996. Social mechanisms. Acta sociologica 39:281–308.CrossRefGoogle Scholar
  26. Hedström, Peter, and Petri Ylikoski. 2010. Causal mechanisms in the social sciences. Annual Review of Sociology 36:49–67.CrossRefGoogle Scholar
  27. Hox, Joop J. 2010. Multilevel Analysis: Techniques and Applications. New York: Routledge.CrossRefGoogle Scholar
  28. Hox, Joop J., Rens van de Schoot and Suzette Matthijsse. 2012. How few countries will do? Comparative survey analysis from a Bayesian perspective. Survey Research Methods 6:87–93.Google Scholar
  29. Hu, Li-Tse, and Peter M. Bentler. 1999. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal 6:1–55.CrossRefGoogle Scholar
  30. Jak, Suzanne. 2014. Testing strong factorial invariance using three-level structural equation modeling. Frontiers in Psychology 5:745.CrossRefGoogle Scholar
  31. Jak, Suzanne, Frans J. Oort and Conor V. Dolan. 2014. Measurement bias in multilevel data. Structural Equation Modeling: A Multidisciplinary Journal 21:31–39.CrossRefGoogle Scholar
  32. Jak, Suzanne, Frans J. Oort, Frans J. and Conor V. Dolan. 2013. A test for cluster bias: Detecting violations of measurement invariance across clusters in multilevel data. Structural Equation Modeling: A Multidisciplinary Journal 20:265–282.CrossRefGoogle Scholar
  33. Jowell, Roger, Caroline Roberts, Rory Fitzgerald and Gillian Eva. 2007. Measuring attitudes cross-nationally. Lessons from the European Social Survey. London: Sage.CrossRefGoogle Scholar
  34. Judd, Charles M., and David A. Kenny. 1981. Process analysis: Estimating mediation in treatment evaluations. Evaluation Review 5:602–619.CrossRefGoogle Scholar
  35. Kaplan, David, and Sarah Depaoli. 2012. Bayesian structural equation modeling. In Handbook of Structural Equation Modeling, ed. Rick H. Hoyle. New York: The Guilford Press.Google Scholar
  36. Kittel, Bernhard. 2006. A crazy methodology? On the limits of macro-quantitative social science research. International Sociology 21:647–677.CrossRefGoogle Scholar
  37. Kroneberg, Clemens. 2019. Theory development in comparative social research. In Cross-national comparative research – analytical strategies, results and explanations. Sonderheft Kölner Zeitschrift für Soziologie und Sozialpsychologie. Eds. Hans-Jürgen Andreß, Detlef Fetchenhauer and Heiner Meulemann. Wiesbaden: Springer VS.
  38. Krull, Jennifer L., and David P. MacKinnon. 1999. Multilevel mediation modeling in group-based intervention studies. Evaluation Review 23:418–444.CrossRefGoogle Scholar
  39. Marsh, Herbert W., Oliver Lüdtke, Alexander Robitzsch, Ulrich Trautwein, Tihomir Asparouhov, Bengt O. Muthén and Benjamin Nagengast. 2009. Doubly-latent models of school contextual effects: Integrating multilevel and structural equation approaches to control measurement and sampling error. Multivariate Behavioral Research 44:764–802.CrossRefGoogle Scholar
  40. Mehta, Paras D., and Michael C. Neale. 2005. People are variables too: Multilevel structural equations modeling. Psychological Methods 10:259.CrossRefGoogle Scholar
  41. Meuleman, Bart, and Jaak Billiet. 2009. A Monte Carlo sample size study: How many countries are needed for accurate multilevel SEM? Survey Research Methods 3:45–58.Google Scholar
  42. Meuleman, Bart, and Elmar Schlüter. 2018. Explaining cross-national measurement inequivalence. A Bayesian multilevel CFA with random loadings. In Cross-Cultural Analysis: Methods and Applications, ed. Eldad Davidov, Peter Schmidt, Jaak Billiet and Bart Meuleman, p. 363-390. New York: Routledge.Google Scholar
  43. Mills, Melinda, Gerhard G. Van de Bunt and Jeanne De Bruijn. 2006. Comparative research: Persistent problems and promising solutions. International Sociology 21:619–631.CrossRefGoogle Scholar
  44. Muthén, Bengt O. 1989. Latent variable modeling in heterogeneous populations. Psychometrika 54:557–585.CrossRefGoogle Scholar
  45. Muthén, Bengt O. 1991. Multilevel factor analysis of class and student achievement components. Journal of Educational Measurement 28:338–354.CrossRefGoogle Scholar
  46. Muthén, Bengt O. 1994. Multilevel covariance structure analysis. Sociological Methods & Research 22:376–398.CrossRefGoogle Scholar
  47. Muthén, Linda K., and Bengt O. Muthén. 2002. How to use a Monte Carlo study to decide on sample size and determine power. Structural Equation Modeling 9:599–620.CrossRefGoogle Scholar
  48. Muthén, Linda K., and Bengt O. Muthén. 1998–2017. Mplus User’s Guide. Eighth Edition. Los Angeles, CA: Muthén & Muthén.Google Scholar
  49. Preacher, Kristopher J., Michael J. Zyphur and Zhen Zhang. 2010. A general multilevel SEM framework for assessing multilevel mediation. Psychological methods 15:209–233.CrossRefGoogle Scholar
  50. Rabe-Hesketh, Sophia, Anders Skrondal and Andrew Pickles. 2004. Generalized multilevel structural equation modeling. Psychometrika 69:167–190.CrossRefGoogle Scholar
  51. Rabe-Hesketh, Sophia, Anders Skrondal and Xiaohui Zheng. 2012. Multilevel structural equation modeling. In Handbook of Structural Equation Modeling, ed. Rick H. Hoyle. New York: The Guilford Press.Google Scholar
  52. Raudenbush, Stephen W., and Anthony S. Bryk. 2002. Hierarchical linear models: Applications and data analysis methods. Sage.Google Scholar
  53. Ruelens, Anna, Bart Meuleman and Ides Nicaise. 2018. Examining measurement isomorphism of multilevel constructs: The case of political trust. Social Indicators Research 140:907–927.CrossRefGoogle Scholar
  54. Saris, Willem E. 1998. The effects of measurement error in cross cultural research. In Cross-cultural survey equivalence. ZUMA-Nachrichten Spezial 3, ed. Janet Harkness. Mannheim: ZUMA.Google Scholar
  55. Schmidt-Catran, Alexander W., Malcolm Fairbrother and Hans-Jürgen Andreß. 2019. Multilevel models for the analysis of comparative survey data: Common problems and some solutions. In Cross-national comparative research – analytical strategies, results and explanations. Eds. Hans-Jürgen Andreß, Detlef Fetchenhauer and Heiner Meulemann. Wiesbaden: Springer VS.
  56. Schlüter, Elmar, and Ulrich Wagner. 2008. Regional differences matter: Examining the dual influence of the regional size of the immigrant population on immigrant derogation in European contexts. International Journal of Comparative Sociology 49:153–173.CrossRefGoogle Scholar
  57. van de Schoot, Rens, David Kaplan, Jaap Denissen, Jens B. Asendorpf, Franz J. Neyer and Marcel A. Aken. 2014. A gentle introduction to Bayesian analysis: Applications to developmental research. Child Development 85:842–860.CrossRefGoogle Scholar
  58. Schwartz, Shalom H. 1994. Beyond individualism/collectivism: New cultural dimensions of values. In Individualism and collectivism: Theory, method and applications, ed. Uichol Kim, Harry C. Triandis, Cigdem Kagitcibasi, Sang-Chin Choi and Gene Yoon. London: Sage.Google Scholar
  59. Skrondal, Anders, and Sophia Rabe-Hesketh. 2004. Generalized latent variable modeling: Multilevel, longitudinal, and structural equation models. Boca Raton: Crc Press.CrossRefGoogle Scholar
  60. Steenkamp, Jan-Benedict E. M., and Hans Baumgartner. 1998. Assessing measurement invariance in cross-national consumer research. Journal of Consumer Research 25:78–90.CrossRefGoogle Scholar
  61. Stegmueller, Daniel. 2013. How many countries for multilevel modeling? A comparison of frequentist and Bayesian approaches. American Journal of Political Science 57:748–761.CrossRefGoogle Scholar
  62. Tay, Louis, Sang E. Woo and Jeroen K. Vermunt. 2014. A conceptual and methodological framework for psychometric isomorphism: Validation of multilevel construct measures. Organizational Research Methods 17:77–106.CrossRefGoogle Scholar
  63. du Toit Stephen H., and Mathilda du Toit. 2008. Multilevel structural equation modeling. In Handbook of Multilevel Analysis, ed. Jan de Leeuw and Erik Meijer. Springer, New York, NY.Google Scholar
  64. Vandenberg, Robert J., and Charles E. Lance. 2000. A review and synthesis of the measurement invariance literature: Suggestions, practices, and recommendations for organizational research. Organizational Research Methods 3:4–69.CrossRefGoogle Scholar
  65. van de Vijver, Fons J.R. 1998. Towards a theory of bias and equivalence. In Cross-cultural survey equivalence. ZUMA-Nachrichten Spezial 3, ed. Janet Harkness. Mannheim: ZUMA.Google Scholar
  66. Van de Vijver, Fons J.R., and Kwok Leung. 1997. Methods and data analysis for cross-cultural research. London: Sage.Google Scholar
  67. Zhang, Zhen, Michael J. Zyphur and Kristopher J. Preacher. 2009. Testing multilevel mediation using hierarchical linear models: Problems and solutions. Organizational Research Methods 12:695–719.CrossRefGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Centre for Sociological ResearchLeuvenBelgium

Personalised recommendations