Skip to main content
Log in

The Role of Sampling in Mixed Methods-Research

Enhancing Inference Quality

Die Rolle von Stichproben in der Mixed Methods-Forschung

Zur Verbesserung der Inferenzqualität

  • Abhandlungen
  • Published:
KZfSS Kölner Zeitschrift für Soziologie und Sozialpsychologie Aims and scope Submit manuscript

Abstract

The purpose of this article is to emphasize the importance of sampling in all mixed methods research studies. Effective meaning making in mixed methods research studies is very much dependent on the quality of inferences that emerge, which, in turn, is dependent on the quality of the underlying sampling design. Further, these inferences are only of a quality nature if interpretive consistency occurs, which represents the justifiableness of the type of generalization made, given the sampling design. In an earlier work, we identified six sampling-based considerations that all mixed methods researchers should make at the four broad stages (i. e., research conceptualization, research planning, research implementation, and research dissemination stages) of the mixed methods research process: emtic orientation, probabilistic orientation, abductive orientation, intrinsic versus instrumental orientation, particularistic versus universalistic orientation, and philosophical clarity. Building on this six-element framework, we outline how focusing on sampling considerations at the four stages of the mixed methods research process, which includes the dissemination stage of reporting the mixed methods research findings to stakeholders, enhances significantly the process of meaning making. We believe that addressing these sampling considerations at each of these stages will increase the likelihood that the mixed methods researcher will uphold interpretive consistency during the meaning-making process.

Zusammenfassung

Der Beitrag unterstreicht die Bedeutung der Stichprobenziehung und Fallauswahl in allen Mixed Methods-Projekten. Die Relevanz von Mixed Methods-Studien zum Verständnis eines sozialen Phänomens hängt wesentlich von der Art der Schlussfolgerungen ab, die aus ihnen gezogen werden können. Diese wiederum hängen von der Angemessenheit des gewählten Stichprobendesigns ab. Die Stichproben können nur gezogen werden, wenn „interpretative Konsistenz“ gewährleistet wird. Interpretative Konsistenz rechtfertigt die Art der Generalisierung, die auf Basis der gewählten Stichprobenziehung oder Fallauswahl vollzogen werden kann. In einer früheren Arbeit haben wir sechs Aspekte identifiziert, die Mixed Methods-Forscher in allen vier Stadien des Forschungsprozesses von Mixed Methods-Projekten (d. h. bei der Konzeptualisierung, der Aufstellung des Forschungsdesigns, der Durchführung der Untersuchung, und der Verbreitung der Ergebnisse) in Bezug auf die Stichprobenziehung oder Fallauswahl berücksichtigen müssen: emtische Orientierung, probabilistische Orientierung, abduktive Orientierung, intrinsische vs. instrumentelle Orientierung, partikularistische vs. universalistische Orientierung und epistemologische Präzision. Aufbauend auf diesem Gerüst aus sechs Elementen stellen wir dar, wie die Fokussierung auf Aspekte der Stichprobenziehung in den vier Stadien des Mixed Methods-Forschungsprozesses, zu dem auch das Stadium der Verbreitung von Ergebnisberichten aus der Mixed Methods-Forschung in Zielgruppen gehört, den Prozess des Erkenntnisgewinns deutlich verbessern kann. Wird die Art der Stichprobenziehung oder der Fallauswahl in allen vier Forschungsphasen hinreichend behandelt und reflektiert, erhöht dies die Wahrscheinlichkeit von interpretativer Konsistenz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Anscombe, Frank J., and Robert J. Aumann, 1963. A definition of subjective probability. The Annals of Mathematical Statistics 34:199–205.

    Article  Google Scholar 

  • Bazeley, Pat. 2009. Analysing qualitative data: More than ‘identifying themes’. Malaysian Journal of Qualitative Research 2:6–22.

    Google Scholar 

  • Bentler, Peter M. 1990. Comparative fit indexes in structural models. Psychological Bulletin 107:238–246.

    Article  Google Scholar 

  • Bentler, Peter M., and Douglas G. Bonett. 1980. Significance tests and goodness of fit in the analysis of covariance structures. Psychological Bulletin 88:588–606.

    Article  Google Scholar 

  • Bollen, Kenneth A. 1989. Structural equations with latent variables. New York: John Wiley.

    Book  Google Scholar 

  • Bronfenbrenner, Urie. 1979. The ecology of human development: Experiments by nature and design. Cambridge: Harvard University Press.

    Google Scholar 

  • Browne, Michael W., and Robert Cudeck. 1993. Alternative ways of assessing model fit. In Testing structural equation models, Eds. Kenneth A. Bollen and J. Scott Long, 136–162. Newbury Park: Sage.

    Google Scholar 

  • Collins, Kathleen M. T., Anthony J. Onwuegbuzie, and Qun G. Jiao. 2006a. Prevalence of mixed methods sampling designs in social science research. Evaluation and Research in Education 19:83–101.

    Google Scholar 

  • Collins, Kathleen M. T., Anthony J. Onwuegbuzie, and Ida L. Sutton. 2006b. A model incorporating the rationale and purpose for conducting mixed methods research in special education and beyond. Learning Disabilities: A Contemporary Journal 4:67–100.

    Google Scholar 

  • Collins, Kathleen M. T., Anthony J. Onwuegbuzie, and Qun G. Jiao. 2007. A mixed methods investigation of mixed methods sampling designs in social and health sciences research. Journal of Mixed Methods Research 1:267–294.

    Article  Google Scholar 

  • Collins, Kathleen M. T. 2010. Advanced sampling designs in mixed research: Current practices and emerging trends in the social and behavioral sciences. In SAGE handbook of mixed methods in social and behavioral research, eds. Abbas Tashakkori and Charles Teddlie, 353–377. Thousand Oaks: Sage.

    Chapter  Google Scholar 

  • Collins, Kathleen M. T., Anthony J. Onwuegbuzie, and R. Burke Johnson. 2012. Securing a place at the table: Introducing legitimation criteria for the conduct of mixed research (Special issue). American Behavioral Scientist 56:849–865.

    Article  Google Scholar 

  • Collins, Kathleen M. T., and Anthony J. Onwuegbuzie. 2013. Establishing interpretive consistency when mixing approaches: Role of sampling designs in program evaluations. New Directions for Evaluation 138:85–95.

    Article  Google Scholar 

  • Collins, Kathleen M. T., Anthony J. Onwuegbuzie, R. Burke Johnson, and Rebecca K. Frels. 2013. Practice note: Using debriefing interviews to promote authenticity and transparency in mixed research. International Journal of Multiple Research Approaches 7:271–283.

    Article  Google Scholar 

  • Curtis, Sarah, Wil Gesler, Glenn Smith, and Sarah Washburn. 2000. Approaches to sampling and case selection in qualitative research: Examples in the geography of health. Social Science and Medicine 50:1001–1014.

    Article  Google Scholar 

  • Dictonary.com. n. d. Sampling. Retrieved from http://www.dictionary.com/browse/sampling?s=t

  • Efron, Bradley, and Robert J. Tibshirani. 1993. An introduction to the bootstrap (Chapman and Hall/CRC Monographs on Statistics and Applied Probability). London: Chapman and Hall.

    Book  Google Scholar 

  • Fetters, Michael D., and Dawn Freshwater. 2015. The 1 + 1 = 3 integration challenge. Journal of Mixed Methods Research 9:115–117.

    Article  Google Scholar 

  • Frels, Rebecca K., and Anthony J. Onwuegbuzie. 2012. Interviewing the interpretive researcher: An impressionist tale. The Qualitative Report 17(Art. 60):1–27.

    Google Scholar 

  • Geertz, Clifford. 1973. Thick description toward an interpretive theory of culture. In The interpretation of cultures, ed. Cifford Geertz, 3–30. New York: Basic Books.

    Google Scholar 

  • Geisser, Seymour. 1993. Predictive inference. New York: Chapman and Hall.

    Book  Google Scholar 

  • Glaser, Barney G., and Anselm L. Strauss, 1967. The discovery of grounded theory: Strategies for qualitative research. Chicago: Aldine.

    Google Scholar 

  • Greene, Jennifer C. 2006. Toward a methodology of mixed methods social inquiry. Research in the Schools 13:93–98.

    Google Scholar 

  • Greene, Jennifer C., Valerie J. Caracelli, and Wendy F. Graham. 1989. Toward a conceptual framework for mixed-method evaluation designs. Educational Evaluation and Policy Analysis 11:255–274.

    Article  Google Scholar 

  • Guba, Egon G., and Yvonna S. Lincoln. 1981. Effective evaluation: Improving the usefulness of evaluation results through responsive and naturalistic approaches. San Francisco: Jossey-Bass.

    Google Scholar 

  • Hall, Bronwyn, and Kirsten Howard. 2008. A synergistic approach: Conducting mixed methods research with typological and systemic design considerations. Journal of Mixed Methods Research 2:248–269.

    Article  Google Scholar 

  • Jeffrey, Richard. 2010. Subjective probability: The real thing. Cambridge: Cambridge University Press.

    Google Scholar 

  • Johnson, R. Burke, and Larry B. Christensen. 2013. Educational research: Quantitative, qualitative, and mixed approaches. Thousand Oaks: Sage.

    Google Scholar 

  • Johnson, R. Burke, Marilyn W. McGowan, and Lisa A. Turner. 2010. Grounded theory in practice: Is it inherently a mixed method? Research in the Schools 17:65–78.

    Google Scholar 

  • Kruskal, William H., and Frederick Mosteller. 1979. Representative sampling, I: Nonscientific literature. International Statistical Review 47:13–24.

    Article  Google Scholar 

  • Lincoln, Yvonna S., and Egon G. Guba. 1985. Naturalistic inquiry. Newbury Park: Sage.

    Google Scholar 

  • Miles, Matthew B., and A. Michael Huberman. 1994. Qualitative data analysis: An expanded sourcebook. Thousand Oaks: Sage.

    Google Scholar 

  • Miles, Matthew B., A. Michael Huberman, and Johnny Saldaña. 2014. Qualitative data analysis: A methods sourcebook. Thousand Oaks: Sage.

    Google Scholar 

  • Morgan, David L. 2007. Paradigms lost and pragmatism regained: Methodological implications of combining qualitative and quantitative methods. Journal of Mixed Methods Research 1:48–76.

    Article  Google Scholar 

  • Morgan, David L. 2014. Integrating qualitative and quantitative methods: A pragmatic approach. Thousand Oaks: Sage.

    Google Scholar 

  • Newman, Isadore., Carolyn S. Ridenour, Carole Newman, and George M. P. DeMarco. 2003. A typology of research purposes and its relationship to mixed methods. In Handbook of mixed methods in social and behavioral research, eds. Abbas Tashakkori and Charles Teddlie, 167–188. Thousand Oaks: Sage.

    Google Scholar 

  • Onwuegbuzie, Anthony J. 2012. Introduction: Putting the mixed back into quantitative and qualitative research in educational research and beyond: Moving towards the radical middle. International Journal of Multiple Research Approaches 6:192–219.

    Article  Google Scholar 

  • Onwuegbuzie, Anthony J., and Kathleen M. T. Collins. 2007. A typology of mixed methods sampling designs in social science research. The Qualitative Report 12:281–316.

    Google Scholar 

  • Onwuegbuzie, Anthony J., and Kathleen M. T. Collins. 2014. Using Bronfenbrenner’s ecological systems theory to enhance interpretive consistency in mixed research. International Journal of Research in Education Methodology 5:651–661.

    Google Scholar 

  • Onwuegbuzie, Anthony J., Kathleen M. T. Collins, and Rebecca K. Frels. 2013. Foreword: Using Bronfenbrenner’s ecological systems theory to frame quantitative, qualitative, and mixed research. International Journal of Multiple Research Approaches 7:2–8.

    Article  Google Scholar 

  • Onwuegbuzie, Anthony J., and Julie P. Combs. 2010. Emergent data analysis techniques in mixed methods research: A synthesis. In SAGE handbook of mixed methods in social and behavioral research, eds. Abbas Tashakkori and Charles Teddlie, 397–430. Thousand Oaks: Sage.

    Chapter  Google Scholar 

  • Onwuegbuzie, Anthony J., and Julie A. Corrigan. 2014. Improving the quality of mixed research reports in the field of human resource development and beyond: A call for rigor as an ethical practice. Human Resource Development Quarterly 25:273–299.

    Article  Google Scholar 

  • Onwuegbuzie, Anthony J., and Rebecca K. Frels. 2016. Seven steps to a comprehensive literature review: A multimodal and cultural approach. London: Sage.

    Google Scholar 

  • Onwuegbuzie, Anthony J., and R. Burke Johnson. 2006. The validity issues in mixed research. Research in the Schools 13:48–63.

    Google Scholar 

  • Onwuegbuzie, Anthony J., and Nancy L. Leech. 2007. A call for qualitative power analyses. Quality and Quantity: International Journal of Methodology 41:105–121.

    Article  Google Scholar 

  • Onwuegbuzie, Anthony J., Nancy L. Leech, and Kathleen M. T. Collins. 2008. Interviewing the interpretive researcher: A method for addressing the crises of representation, legitimation, and praxis. International Journal of Qualitative Methods 7:1–17.

    Article  Google Scholar 

  • Onwuegbuzie, Anthony J., John R. Slate, Nancy L. Leech, and Kathleen M. T. Collins. 2009. Mixed data analysis: Advanced integration techniques. International Journal of Multiple Research Approaches 3:13–33.

    Article  Google Scholar 

  • Onwuegbuzie, Anthony J., and Abbas Tashakkori. 2015. Utilizing mixed research and evaluation methodology in peace psychology and beyond. In Methodologies in peace psychology: Peace research by peaceful means, eds. Diane Bretherton and Siew F. Law, 115–137. New York: Springer.

    Chapter  Google Scholar 

  • Onwuegbuzie, Anthony J., Ann E. Witcher, Kathleen M. T. Collins, Janet D. Filer, Cheryl D. Wiedmaier, and Christopher W. Moore. 2007. Students’ perceptions of characteristics of effective college teachers: A validity study of a teaching evaluation form using a mixed methods analysis. American Educational Research Journal 44:113–160.

    Article  Google Scholar 

  • Patton, Michael Q. 2014. Qualitative research and evaluation methods. Thousand Oaks: Sage.

    Google Scholar 

  • Patton, Michael Q. 2015. Qualitative research and evaluation methods: Integrating theory and practice. Thousand Oaks: Sage.

    Google Scholar 

  • Payne, Geoff, and Malcolm Williams. 2005. Generalization in qualitative research. Sociology 39:295–314.

    Article  Google Scholar 

  • Pitman, Jim. 1999. Probability. New York: Springer.

    Google Scholar 

  • Plano Clark, Vicki L., and Manijeh Badiee. 2010. Research questions in mixed methods research. In SAGE handbook of mixed methods in social and behavioral research, eds. Abbas Tashakkori and Charles Teddlie, 275–304. Thousand Oaks: Sage.

    Chapter  Google Scholar 

  • Sandelowski, Margarete. 2008. Theoretical saturation. In The Sage encyclopedia of qualitative methods, ed. Lisa M. Given, 875–876. Thousand Oaks: Sage.

    Google Scholar 

  • Saumure, Kristie, and Lisa M. Given. 2008. Data saturation. In The Sage encyclopedia of qualitative methods, ed. Lisa M. Given, 195–196. Thousand Oaks: Sage.

    Google Scholar 

  • Schumacker, Randall E., and Richard G. Lomax. 1996. A beginner’s guide to structural equation modeling. New York: Routledge.

    Google Scholar 

  • Schumacker, Randall E., and Richard G. Lomax. 2010. A beginner’s guide to structural equation modeling. New York: Routledge.

    Google Scholar 

  • Shao, Jun, and Dongsheng Tu. 1996. The jackknife and bootstrap (Springer Series in Statistics). New York: Springer.

    Google Scholar 

  • Small, Mario L. 2009. ‘How many cases do I need?’: On science and the logic of case selection in field-based research. Ethnography 10:5–38.

    Article  Google Scholar 

  • Sober, Elliott. 2012. Core questions in philosophy: A text with readings. (MyThinkingLab Series). Upper Saddle River: Pearson.

    Google Scholar 

  • Stake, Robert E. 2000. Case studies. In Handbook of qualitative research, eds. Norman K. Denzin and Yvonna S. Lincoln, 435–454. Thousand Oaks: Sage.

    Google Scholar 

  • Stake, Robert E. 2005. Qualitative case studies. In The SAGE handbook of qualitative research, eds. Norman K. Denzin and Yvonna S. Lincoln, 443–466. Thousand Oaks: Sage.

    Google Scholar 

  • Stake, Robert E., and Deborah J. Trumbull. 1982. Naturalistic generalizations. Review Journal of Philosophy and Social Science 7:3–12.

    Google Scholar 

  • Strauss, Anselm. L., and Juliet Corbin. 1998. Basics of qualitative research: Grounded theory procedures and techniques. Thousand Oaks: Sage.

    Google Scholar 

  • Tashakkori, Abbas, and Charles Teddlie. 1998. Mixed methodology: Combining qualitative and quantitative approaches. Applied Social Research Methods Series. Thousand Oaks: Sage.

    Google Scholar 

  • Teddlie, Charles, and Fen Yu. 2007. Mixed methods sampling: A typology with examples. Journal of Mixed Methods Research 1:77–100.

    Google Scholar 

  • Williams, Malcolm. 2000. Interpretivism and generalization. Sociology 34:209–224.

    Article  Google Scholar 

  • Yin, Robert K. 2009. Case study research: Design and methods. Thousand Oaks: Sage.

    Google Scholar 

  • Yin, Robert K. 2016. Qualitative research from start to finish. Thousand Oaks: Sage.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony J. Onwuegbuzie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Onwuegbuzie, A.J., Collins, K.M.T. The Role of Sampling in Mixed Methods-Research. Köln Z Soziol 69 (Suppl 2), 133–156 (2017). https://doi.org/10.1007/s11577-017-0455-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11577-017-0455-0

Keywords

Schlüsselwörter

Navigation