Skip to main content
Log in

Perspectives on the Biodemography of Longevity and Aging

Biodemographische Perspektiven auf Langlebigkeit und Alterung

  • Published:
KZfSS Kölner Zeitschrift für Soziologie und Sozialpsychologie Aims and scope Submit manuscript

Abstract

Biodemography is a timely and exciting area of research that has been emerging over the past 15–20 years and might arguably be the most quickly growing area of demography. From the perspective of longevity and aging, questions arise that touch on the biological foundation of aging. With a focus on mortality, this article offers a perspective on recent developments in evolutionary biodemography. These include new theories, methods, and data that have resulted in striking new findings on the diversity of life courses (including the option of escape from aging for some species) that is licensed by nature across the tree of life. As the human life course is rapidly changing due to unimpeded population aging, advances in development of biodemographic theories, methods and databases may prove useful and inspire advances in sociology.

Zusammenfassung

Die Biodemografie hat sich in den vergangenen 15–20 Jahren als eines der spannendsten und am schnellsten wachsenden Felder in der demographischen Forschung entwickelt. Aus der Perspektive der Langlebigkeit und des Alterns ergeben sich hier Fragen, die die biologischen Grundlagen des Alterns berühren. Der vorliegende Beitrag gibt, mit einem Fokus auf Mortalität, einen Überblick über neuere Entwicklungen in der evolutionären Biodemografie. Hierzu gehören neue Theorien, Methoden und Daten, die zu weitreichenden, neuen Einsichten in die Diversität von Lebensverläufen geführt haben. Vor dem Hintergrund einer weiter fortschreitenden Bevölkerungsalterung und sich in diesem Zusammenhang schnell wandelnder menschlicher Lebensläufe erscheinen Fortschritte bei der Entwicklung biodemografischer Theorien, Methoden und Daten als nützlich, um auch Fortschritte in der soziologischen Forschung anzustoßen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Note that, different to humans, the train would be thought of as infinitely long for an organism that could continue to reproduce until death and that, given being alive at any age, has a non-zero probability to survive. Still, as eventual death must be certain, evolutionary fitness will be finite. This finite amount of total fitness is successively contributed by those carriages that have already been safely dragged by the engine into the next generation. As this amount converges, further contributions by adding more and more of the later carriages become insignificant. Hence, losing remaining carriages at later and later ages becomes less and less relevant to evolutionary fitness, even for a species that may be represented by an infinitely long train.

  2. Why disparity captures the shape of aging can be intuitively understood. If disparity is zero, then all individuals die exactly at the same time; this implies that mortality rises from an average value of zero up to infinity at the age that marks the wall of death. As lifespans become more disparate, average mortality becomes higher and the increase towards the end of life less steep. Eventually, if many die young but a few manage to live for a long time, the shape would exhibit a negative pattern, more steeply so the more disparate the many short and the few long lifespans.

References

  • Aassve, Arnstein, Francesco C. Billari, and Raffaela Piccarreta. 2007. Strings of adulthood: A sequence analysis of young British women’s work-family trajectories. European Journal of Population 23:369–388.

    Article  Google Scholar 

  • Abbott, Andrew, and Angela Tsay. 2000. Sequence analysis and optimal matching methods in sociology. Sociological Methods & Research 29:3–33.

    Article  Google Scholar 

  • Aisenbrey, S., and A. E. Fasang. 2010. New life for old ideas: The “Second Wave” of sequence analysis. Bringing the “Course” back into the life course. Sociological Methods & Research 38:420–462.

    Article  Google Scholar 

  • Arnett, Jeffrey Jensen. 2000. Emerging adulthood: A theory of development from the late teens through the twenties. American Psychologist 55:469–480.

    Article  Google Scholar 

  • Baudisch, Annette. 2008. Inevitable senescence? Contributions to evolutionary-demographic theory. Berlin: Springer.

    Google Scholar 

  • Baudisch, Annette. 2011. The pace and shape of aging. Methods in Ecology and Evolution 2:375–382.

    Article  Google Scholar 

  • Baudisch, Annette, and James W. Vaupel. 2010. Senescence vs. sustenance: Evolutionary-demographic models of aging. Demographic Research 23:655–668.

    Article  Google Scholar 

  • Baudisch, Annette, and James W. Vaupel. 2012. Getting to the root of aging. Science 338:618–619.

    Article  Google Scholar 

  • Baudisch, Annette, Roberto Salguero-Gomez, Owen R. Jones, Tomasz F. Wrycza, Cyril Mbeau-Ache, Miguel Franco and Fernando Colchero. 2013. The pace and shape of senescence in angiosperms. Journal of Ecology 101:596–606.

  • Billari, Francesco C. 2009. The life course is coming of age. Advances in Life Course Research 14:83–86.

    Article  Google Scholar 

  • Billari, Francesco C., Thomas Fent, Alexia Prskawetz, and Jürgen Scheffran. 2006. Agent-based computational modelling. Heidelberg: Physica-Verlag.

    Book  Google Scholar 

  • Börsch-Supan, Axel, Klaus Härtl, and Alexander Ludwig. 2014. Aging in Europe: Reforms, international diversification, and behavioral reactions, American Economic Review Papers & Proceedings 104:224–229.

    Article  Google Scholar 

  • Bronikowski, Anne M., Jeanne Altmann, Diane K. Brockman, Marina Cords, Linda M. Fedigan, Anne Pusey, Tara Stoinski, William F. Morris, Karen B. Strier, and Susan C. Alberts. 2011. Aging in the natural world: Comparative data reveal similar mortality patterns across primates. Science 331:1325–1328.

    Article  Google Scholar 

  • Burger, Oskar, Annette Baudisch, and James W. Vaupel. 2012. Human mortality improvement in evolutionary context. Proceedings of the National Academy of Sciences USA 109:18210–18214.

    Article  Google Scholar 

  • Carey, James R., and Shripad Tuljapurkar, eds. 2003. Life span. Evolutionary, ecological and demographic perspectives. Supplement to population and development review. New York: The Population Council.

    Google Scholar 

  • Carey, James R., and James W. Vaupel. 2005. Biodemography. In Handbook of Population, eds. D. Poston, and M. Micklin, 625–658. San Diego: Kluwer Academic/Plenum Publishers.

  • Caswell, Hal. 2001. Matrix population models. Sunderland: Sinauer Associates Inc.

    Google Scholar 

  • Caswell, Hal. 2009. Stage, age and individual stochasticity in demography. Oikos 118:1763–1782.

    Article  Google Scholar 

  • Caswell, Hal, and Roberto Salguero-Gómez. 2013. Age, stage and senescence in plants. Journal of Ecology 101:585–595.

    Article  Google Scholar 

  • Charlesworth, Brian. 1994. Evolution in Age-Structured Populations. Cambridge: Cambridge University Press.

  • Cochran, Margaret E., and Stephen Ellner. 1992. Simple methods for calculating age-specific life history parameters from stage-structured models. Ecological Monographs 62:345–364.

    Article  Google Scholar 

  • Cohen, Alan A., Lynn B. Martin, John C. Wingfield, Scott R. McWilliams, and Jennifer A. Dunne. 2012. Physiological regulatory networks: Ecological roles and evolutionary constraints. Trends in Ecology and Evolution 27:428–435.

    Article  Google Scholar 

  • Colchero, Fernando, and James S. Clark. 2012. Bayesian inference on age-specific survival for censored and truncated data. Journal of Animal Ecology 81:139–149.

    Article  Google Scholar 

  • Colchero, Fernando, Owen R. Jones, and Maren Rebke. 2012. BaSTA: An R package for Bayesian estimation of age-specific survival from incomplete mark-recapture/recovery data with covariates. Methods in Ecology and Evolution 3:466–470.

    Article  Google Scholar 

  • Cole, Lamont C. 1954. The population consequences of life history phenomena. The Quarterly Review of Biology 29:103–137.

    Article  Google Scholar 

  • Dańko, Maciej J., Jan Kozłowski, James W. Vaupel, and Annette Baudisch. 2012. Mutation accumulation may be a minor force in shaping life history traits. PLoS One 7:e34146.

    Article  Google Scholar 

  • Darwin, Charles. 1859. On the origin of species. London: John Marrey Albemarle Street.

    Google Scholar 

  • Finch, Caleb E. 1990. Longevity, senescence, and the genome. Chicago: University of Chicago Press.

    Google Scholar 

  • Franco, Miguel, and Jonathan Silvertown. 2004. Comparative demography of plants based upon elasticities of vital rates. Ecology 85:531–538.

    Article  Google Scholar 

  • Gaillard, Jean-Michel, Allaine D. Pontier, Nigel G. Yoccoz, and Daniel E. L. Promislow. 1994. Senescence in natural populations of mammals—a reanalysis. Evolution 48:509–516.

    Article  Google Scholar 

  • Hamilton, William D. 1966. Moulding of senescence by natural selection. Journal of Theoretical Biology 12:12–45.

    Article  Google Scholar 

  • Horvitz, Carol C., and Shripad Tuljapurkar. 2008. Stage dynamics, period survival and mortality plateaus. The American Naturalist 172:203–215. http://basta.r-forge.r-project.org/ http://ipmpack.r-forge.r-project.org/ http://www.compadre-db.org/

    Article  Google Scholar 

  • https://methodsblog.wordpress.com/2012/03/19/basta/

  • Jones, Owen R., Jean-Michael Gaillard, Shripad Tuljapurkar, Jussi S. Alho, Kenneth B. Armitage, Peter H. Becker, Pierre Bize Jon Brommer, Anne Charmantier, Marie Charpentier, Tim Clutton-Brock, F. Stephen Dobson, Marco Festa-Bianchet, Lars Gustafsson, Henrik Jensen, Carl G. Jones Bo-Göran Lillandt, Robin McCleery, Juha Merilä, Peter Neuhaus, Malcolm A. C. Nicoll, Ken Norris, Madan K. Oli, Josephine Pemberton, Hannu Pietiäinen, Thor Harald Ringsby, Alexandre Roulin, Bernt-Erik Saether, Joanna M. Setchell, Ben C. Sheldon, Paul M. Thompson, Henri Weimerskirch, E. Jean Wickings, and Tim Coulson. 2008. Senescence rates are determined by ranking on the fastslow life-history continuum. Ecology Letters 11:664–673.

    Article  Google Scholar 

  • Jones, Owen R., Alexander Scheuerlein, Roberto Salguero-Gomez, Carlo Giovanni Camarda, Ralf Schaible, Brenda B. Casper, Johan P. Dahlgren, Johan Ehrlen, María B. Garcia, Eric S. Menges, Pedro F. Quintana-Ascencio, Hal Caswell, Annette Baudisch, and James W. Vaupel. 2014. Diversity of aging across the tree of life. Nature 505:169–173.

    Article  Google Scholar 

  • Keyfitz, Nathan, and Hal Caswell. 2005. Applied mathematical demography 3rd ed. New York: Springer.

    Google Scholar 

  • Kirkwood, Thomas B. L. 1977. Evolution of aging. Nature 270:301–304.

    Article  Google Scholar 

  • Lack, David. 1954. The natural regulation of animal numbers. Oxford: Oxford University Press.

    Google Scholar 

  • Leslie, Patrick H. 1945. On the use of matrices in certain population mathematics. Biometrika 33:183–212.

    Article  Google Scholar 

  • Lotka, Alfred J. 1907. Relation between birth rates and death rates. Science 26:121–130.

    Article  Google Scholar 

  • Lotka, Alfred J. 1925. Elements of physical biology. Baltimore: Williams and Wilkins Company.

    Google Scholar 

  • Mayer, Karl Ulrich. 2009. New directions in life course research. Annual Review of Sociology 35:413–433.

    Article  Google Scholar 

  • McCormick, Mark A., and Daniel E. L. Promislow. 2014. Networks in the biology of aging: Powerful tools for a complex process. Annual Review of Gerontology and Geriatrics 34:243–266.

    Article  Google Scholar 

  • McGue, Matt, James. W. Vaupel, Niels V. Holm, and Brent Harvald. 1993. Longevity is moderately heritable in a sample of Danish twins born 1870–1880. Journal of Gerontology. A 48:B237–B244.

    Article  Google Scholar 

  • Medawar, Peter B. 1952. An unsolved problem of biology. London: H.K. Lewis.

    Google Scholar 

  • Merow, Cory, Johan P. Dahlgren, C. Jessica E., Dylan Z. Childs, Margaret E.K. Evans, Eelke Jongejans, Sydne Record, Mark Rees, Roberto Salguero-Gomez, and Sean M. McMahon. 2013. Advancing population ecology with integral projection models: a practical guide. Methods in Ecology and Evolution 5:99–110.

    Article  Google Scholar 

  • Metcalf, C., E. Jessica, Sean M. McMahon, Roberto Salguero-Gómez, and Eelke Jongejans 2013. IPMpack: An R package for integral projection models. Methods in Ecology and Evolution 4:195–200.

    Article  Google Scholar 

  • Monaghan, Pat, Anne Charmantier, Daniel. H. Nussey, and Robert E. Ricklefs. 2008. The evolutionary ecology of senescence. Functional Ecology 22:371–378.

    Article  Google Scholar 

  • Oeppen James, and James W. Vaupel. 2002. Demography. Broken limits to life expectancy. Science 296:1029–1031.

    Article  Google Scholar 

  • Pearl, Raymond 1928. The rate of living. New York: Alfred A. Knopf.

    Google Scholar 

  • Pearl Raymond, and John R. Miner. 1935. Experimental studies on the duration of life. XIV. The comparative mortality of certain lower organisms. The Quarterly Review of Biology 10:60–79.

    Article  Google Scholar 

  • Preston, Samuel, Patrick Heuveline, and Michel Guillot. 2000. Demography: Measuring and modeling population processes. Wiley-Blackwell.

  • Promislow, Daniel E.L. 1991. Senescence in natural populations of mammals—a comparative study. Evolution 45:1869–1887.

    Article  Google Scholar 

  • Roach, Deborah A. 1993. Evolutionary senescence in plants. Genetica 91:53–64.

    Article  Google Scholar 

  • Roach, Deborah A. 2003. Evolutionary and demographic approaches to the study of whole plant senescence. In Plant Cell Death Processes, eds. Larry D. Nooden, 331–145. San Diego: Academic Press.

    Google Scholar 

  • Roff, Derek A. 2002. Life history evolution. Sunderland: Sinauer Associates.

    Google Scholar 

  • Salguero-Gómez, Roberto, Owen R. Jones, Yvonne M. Buckley, Judy Che-Castaldo, Hal Caswell, Dalia A. Conde, Alexander Scheuerlein, Annette Baudisch, C. Ruth., Hendrik de Buhr, Fränce Gottschalk, Claudia Farack, Alexander Hartmann, Anne Henning, Gabriel Hoppe, Gesa Römer, Jens Runge, Tara Ruoff, Julia Wille, Stefan Zeh, Res Altwegg, Fernando Colchero, Ming Dong, David Hodgson, Hans de Kroon, Jean-Dominique Lebreton, Jessica C. Metcalf, Maile Neel, Ingrid Parker, Bernt-Erik Saether, Juan Silva, Takenori Takada, Teresa Valverde, Luis Antonio Vélez-Espino, Glenda Wardle, Miguel Franco, Jonathan Silvertown, and James W. Vaupel. 2014. The compadre plant matrix database: An open online repository for plant demography. Journal of Ecology doi:10.1111/1365-2745.12334.

  • Sanderson Warren C., and Sergei Scherbov. 2005. Average remaining lifetimes can increase as human populations age. Nature 435:811–813.

    Article  Google Scholar 

  • Sharpe, Francis R., and Alfred J. Lotka. 1911. A problem in age distribution. Philosophical Magazine 21:435–438.

    Article  Google Scholar 

  • Silvertown, Jonathan. 2013. The long and the short of it: The science of life span and aging. Chicago: University of Chicago Press.

    Book  Google Scholar 

  • Silvertown, Jonathan, Miguel Franco, and Ruben Perez-Ishiwara. 2001. Evolution of senescence in iteroparous perennial plants. Evolutionary Ecology Research 3:393–412.

    Google Scholar 

  • Staudinger, Ursula M., and Ulman Lindenberger, eds. 2003. Understanding human development: Dialogues with lifespan psychology. Amsterdam: Kluwer Academic Publishers.

    Google Scholar 

  • Stearns, Steven C. 1992. The evolution of life histories. Oxford: Oxford University Press.

    Google Scholar 

  • Vaupel, James W. 2010. Biodemography of human aging. Nature 464:536–542.

    Article  Google Scholar 

  • Vaupel, James W., Annette Baudisch, Martin Dölling, Deborah A. Roach and Jutta Gampe. 2004. The case for negative senescence. Theoretical Population Biology 65:339–351.

  • Vaupel, James W., James R. Carey, Kaare Christensen, Thomas E. Johnson, Anatoli I. Yashin, Niels V. Holm, Ivan A. Iachine, Väinö Kannisto, Aziz A. Khazaeli, Pablo Liedo, Valter D. Longo, Yi Zeng, Kenneth G. Manton, and James W Curtsinger. 1998. Biodemographic trajectories of longevity. Science 280:855–860.

    Article  Google Scholar 

  • Wachter, Kenneth W., and Caleb E. Finch, eds. 1997. Between Zeus and the Salmon: The biodemography of longevity. Washington: National Academy Press.

    Google Scholar 

  • Wensink, Maarten. 2013. Age-specificity and the evolution of senescence: A discussion. Biogerontology 14:99–105.

    Article  Google Scholar 

  • Wensink, Maarten, Diana van Heemst, Maarten P. Rozing, and Rudi G. J. Westendorp. 2012. The maintenance gap: A new theoretical perspective on the evolution of aging. Biogerontology 13:197–201.

    Article  Google Scholar 

  • Wensink, Maarten, Tomasz F. Wrycza, and Annette Baudisch. 2014. No senescence despite declining selection pressure. Journal of Theoretical Biology 347:176–181.

    Article  Google Scholar 

  • Williams, George C. 1957. Pleiotropy, natural selection, and the evolution of senescence. Evolution 11:398–411.

    Article  Google Scholar 

  • Wrycza, Tomasz F., and Annette Baudisch. 2014. The pace of aging: Intrinsic time scales in Demography. Demographic Research 30:1571–1590.

    Article  Google Scholar 

  • Wrycza, Tomasz F., Trifon Missov, and Annette Baudisch. 2015. Quantifying the shape of aging. PLoS One 10(3): e0119163. doi:10.1371/journal.pone.0119163.

    Article  Google Scholar 

  • Xiang-Yi, Li, Stefano Giaimo, Annette Baudisch, and Arne Traulsen. 2015. Modeling evolutionary games in populations with demographic structure.. Journal of Theoretical Biology.

Download references

Acknowledgement

For helpful comments I am grateful to Hal Caswell and James W. Vaupel, and I thank C. Ruth Archer for proofreading the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annette Baudisch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baudisch, A. Perspectives on the Biodemography of Longevity and Aging. Köln Z Soziol 67 (Suppl 1), 425–439 (2015). https://doi.org/10.1007/s11577-015-0321-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11577-015-0321-x

Keywords

Schlüsselwörter

Navigation